BLIYNCINTEJILHLIE METOILL U IPOCPAMMUPOBAHKE. 2009. T. 10 385

YK 519.644

HOBBIE TEXHOJIOTUY BHLICOKOHHOU3BOAUTEJABHBIX BHIYIACJIEHWM:
YN CJEHHOE MHTETHUHOBAHUE HA THA®PUYIECKUX HHOITECCOHAX!

A. Cmenc?, H. Ckort?, 1. T'mmaan’

[Mpumenenne meTona R-MaTpuibl K m3y<9eHUO pacCemBaHUA 3IEKTPOHOB TPOMEKYTOYHBIX SHEPTUH
Ha aTOMe BOAOPOa TPUBOINT K HEOOXO TUMOCTH BBIMUCACHNA GOJMBIION O KOJNYIECTBA NBYX3JIEKTPOH-
HBIX HHTETPAJOB OT YHCAOBLIX 0a3mcHBIX (GYHKOUNA. KaX bl U3 3THX HHTETPATOB MOXKET OBITH
BBIYHCIEH HE3ABUCUMO OT OCTAJIBHBIX, YTO MO3BOJAACT 3(pPeKTUBHO pacnapasieanTb IPoueaypy BbI-
qncaennil. [laccmaTpuBaeTcsa mapasieibHas pealu3and STOH TPOleAyPhl, NCIOMB3YoIIasd Tpaditie-
ckmit porieccop (GPU) B kadecTBe conpolieccopa, 9To npuMepHo B 20 pa3 yeKOpAET BEIMUCACHIA 1O
CPaBHEHWIO C MOCAeOBATENBHON Bepcrell. KpaTKo OMUCHIBAIOTCA OCOGEHHOCTH BBIMOJHAEMBIX Pac-
“eTOB, KOTOphle meaatoT npumenenne GPU moaxomammm misa 3pdeKTUBHOTO pellleHns psaga apy-
IUX BBYUCAUTEABHBIX 3afad. UTaThd PEeKOMEHOBaHA K TeYaTh MPOTPAMMHBIM KOMUTETOM MeXK-
OyHAPOTHOW HayYHOU KoH(epeHnnn “MaTeMaTndeckoe MOJEINPOBAHNE W BHITUCJAUTENbHAS (DUBTKA

2009” (MMCP2009, http://mmcp2009 jinr.ru).

KuarodeBnie caoBa: ducieHHOe WHTErpupoBaHne, MeTon R-mMaTpuiisl, mapaiatrenbras peadusamnusa, GPU.

1. Introduction. For the last two decades, most software applications have enjoyed regular performance
gains, with little or no software modification, as each successive generation of microprocessors delivered faster
CPUs. However, system builders have now hit physical limits which have slowed the rate of increase of CPU
performance and the computing industry is moving inexorably towards multiple cores on a single chip. Never-
theless, general purpose many-core processors may not deliver the capability required by leading-edge research
applications. High performance may be more cost-effectively achieved in future generation systems by hetero-
geneous accelerator technologies such as General Purpose Graphical Processing Units (GPGPUs), STI’s Cell
processors and Field Programmable Gate Arrays (FPGAs).

Innovative algorithms, software and tools are needed so that HPC application scientists can effectively
exploit these emerging technologies. Recent progress in this area includes: Ramdas et al. [7] who emphasize the
importance of SIMD algorithms; Baboulin et al. [2] who illustrate the potential of mixed-precision algorithms;
and the development of numerical libraries that can effectively exploit multi-core architectures such as PLAMSA
from the Innovative Computing Laboratory [1] and HONEI by van Dyk et al. [12].

In this paper we describe initial work on deploying the Fortran suite 2DRMP [3, 11] on NVIDIA GPUs.
2DRMP is a collection of two-dimensional R-matrix propagation programs aimed at creating virtual experiments
on high performance and grid architectures to enable the study of electron scattering from H-like atoms and
ions at intermediate energies [8]. We focus on one of the identified hot-spots [9], namely, the computation of two-
dimensional radial or Slater integrals that occur in the construction of Hamiltonian matrices. Using the 2DRMP
to model electron scattering by a hydrogen atom requires the calculation (by numerical quadrature) of millions

a

of integrals of the form I(ny, 1, na,ls, ng, s, n4, 04, A) = /unlll(r)unala(r) [r_>‘_1]1 —|—r>‘12] dr, where the inner

0
r a

integrals I; and Iz are I (r) = /t>‘uml2(t)un4l4(t) dt, I»(r) = /t_>‘_1uml2(t)uml4(t) dt and the required
0 r
values of the orbital functions u,; are computed numerically and tabulated in advance. The integrations are
carried out numerically using Simpson’s Rule and they all use the same mesh of typically 1001 values of r.
It would appear that at each quadrature point of the outer integral 7 the calculation of two inner integrals Iy
and I, is required, leading to a complexity for the entire algorithm of O(N?), where N is the number of data

! Work partially supported by U.K. Engineering and Physical Sciences Research Council (EPSRC) under
grants EP/F010052/1, EP/G00210X/1.

2School of Electronics, Electrical Engineering & Computer Science, The Queen’s University of Belfast,
Belfast BT7 INN, UK; A. Cmenc, mpodeccop, e-mail: i.spence@qub.ac.uk; II. CkorT, mpodeccop, e-mail:
ns.scott@qub.ac.uk; Y. 'maman, npodeccop, e-mail: c.gillan@ecit.qub.ac.uk

© Iayuno-uccaeqoBaTelbCKUN BhIYUCAUTENBHBIT enTp MT'Y um. M. B. Jlomonocosa



386 BBIYMCJIUTEJbHBIE METOABI 1 TIPOIPAMMUPOBAHUE. 2009. T. 10

points. However, because the same mesh is used for both inner and outer integrals, it is possible to coalesce the
inner and outer loops giving a complexity which is O(N).

For further details, see Scott et. al. [11].

2. Graphical Processing Unit. Graphical Processing Units, which are co-processors providing significant
floating-point capability originally developed to support computationally intensive graphics for computer gam-
ing, have attracted significant recent interest from the scientific computing community [6]. The computational
capacity for a relatively modest expenditure makes them a very attractive proposition, but attempts to use
them for general-purpose computing have met with varying degrees of success.

The nVidia GeForce 8800 GTX used in this experiment has 768 MB of global memory, and all communi-
cation of data between the host computer and the GPU is by writing to and reading from this memory. The
device has 128 processors (in groups of 8, each group constituting a multiprocessor) [5].

The processors all have access

to the global memory, and there is Host GPU

also 8 KB of local on-chip memory
on each multiprocessor which is much Orbitals @

faster but can only be accessed by
threads running on that multiproces-

sor. The programming model is that ‘Buffef fo‘r‘ pafaméters‘ /\ ‘Buffef fo‘r‘ pafaméters‘
input data is copied to the device 'Y
global memory and then many copies
of the same function are executed as for (..)
/

. lculat t
concurrent threads on the different caleuiate parameters
if (batch ready)

send to GPU

invoke kernel

processors, with results being writ-
ten back to global memory. Finally,
results are copied to the host from
global memory. In order to compen-
sate for the relatively slow access to

global memory, 1t is important to use /
the local memory where possible. In A T
addition, the GPU is able to inter- ‘Resylgs ‘ ‘Regulps
leave communication and computa-

tion and so it is recommended that I

there are many more threads of ex- !
ecution than there are physical pro-
Cessors.

It is important to note that on a given multiprocessor the execution is forced to be Single Instruction
Multiple Data (SIMD) and that if one thread of execution is, for example, executing more iterations of a loop
than the others, none of the threads will continue to the next statement in the program until all are ready to
do so. This can have a significant impact on performance.

3. GPU Algorithm. There is no interaction amongst the calculations of the separate integrals, making
this an obvious candidate for a parallel implementation with each integral being calculated within a separate
thread. For an efficient GPU version of the algorithm, as mentioned above, it is essential that the parallel
execution can be made SIMD, that is that each thread executes the same sequence of instructions. The control
statements within the integration code consist only of for statements with fixed bounds. There are no while
or if statements and so SIMD execution is achievable.

In the original program, there is a double loop over the rows and columns of the Hamiltonian matrix. For
each matrix element, multiple integrals are evaluated and incorporated into the matrix immediately, which can
involve some further simple arithmetic, depending on the particular element.

GPU Threads

retrieve results

place in matrix

Fig. 1. Co-operation between host and GPU

for (...)
ni=...; ...; la=...; A=...; factor = ...; mpos = ...;
result = I(nlallanZalzan3al3an4al4aA);
matrix[mpos] += result * factor ...;

In order to exploit the parallelism of the GPU, it is important that the program be in a position to calculate
thousands integrals at once on the GPU, and so a buffer has to be placed between the loop over matrix elements
which generates the parameters and the parallel evaluation of the integrals (see Fig. 1). A buffer element has



BLIYNCINTEJILHLIE METOILL U IPOCPAMMUPOBAHKE. 2009. T. 10 387

to store details of the parameters and the operation which must be performed to incorporate the value of the
integral into the matrix.

for (...)

{
ni=...; ... ; la=...; A=...; factor = ...; mpos = ...;
buffer[bpos++] = (ny,...,l4 , A, factor, mpos);

1

copy buffer to GPU;

perform integrals in parallel;

copy results back;

for (...)

{
factor = buffer[bpos].factor; mpos = buffer[bpos] .mpos;
result = results[bpos];
hmat [mpos] += result * factor ... ;

3.1. GPU Issues. Several problems arose because of constraints of the hardware platform, namely:
(i) the GPU (nVidia GeForce 8300) does not support double precision arithmetic;

(ii) the access to device global memory is relatively slow.

3.1.1. Single Precision. The original pro-

gram was written to use double precision float-
ing point numbers but double precision arithmetic — 2200} Host (Double Precision)
was not supported by the GPU and single preci- % 2000}
sion had to be used instead. The precision of the & jgn0l
results was still acceptable but there were initially 3 1600l ol .
some problems with underflow and overflow when E Host (Single Precision)
calculating * which required the algorithm to be '§ 1400}
re-cast. A tool such as CADNA [10] is essential to ™ 1200}
validate the efficacy of the single precision algo- § 1000}
rithm. 800 |
nVidia cards are now available which support 600F - GPU (G}BEE}l Memory)
double precision but as yet the extent of paral- 400 | ) ) -
lelism supported is significantly less then for single 200 | GPU (Texture Memory)
precision (8 times less on the GTX280). 0 ‘ ‘ ‘ : ‘ ‘ ‘ : -
3.1.2. Memory Access. The recommended 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
technique for overcoming the delays introduced by Number of GPU threads

accessing device global memory is first to copy Fig. 2. Wall clock execution times for 99 million integrals
data to local on-chip memory which can be ac-

cessed much more quickly. For this to be possible, the amount of data required has to fit in the available
memory (8 KB per multiprocessor) and, for it to be effective, each value should be accessed multiple times by a
particular thread. In each integral, approximately 4,000 floating point values (16 KB) are required and typically
each value is only accessed twice, so neither of these criteria was satisfied in this instance.

There is however an additional method provided by CUDA for reducing memory access times. Data can be
stored in texture memory provided that it 1s not modified by the GPU code. This is still device global memory
but, because it is guaranteed to be constant during the execution of a given kernel function, it can be efficiently
cached for access by multiple threads on the same multiprocessor. This is reported to be particularly effective
when there 1s locality of access to data across multiple threads, which does arise with this application when the
values u,; of the orbital functions are placed in texture memory.

4. Results. The host machine on which these experiments were carried out has a 3 GHz processor with 4
cores, although no use was made of the multiple cores during the experiments described here. The GPU was a
nVidia GeForce 8800 GTX. The problem instance required the calculation of some 99 million integrals.

As illustrated in Fig. 2, the number of GPU threads used made little difference when the orbitals were all
accessed directly from global memory. When texture memory was used, the execution time did decrease as the
number of threads increased until there were nearly 4,000 threads. The table lists the execution times using the
optimal number of GPU threads.

Using single precision arithmetic on both platforms, it can be seen that the GPU version with 3980 threads



388 BBIYMCJIUTEJbHBIE METOABI 1 TIPOIPAMMUPOBAHUE. 2009. T. 10

is approximately 20 times faster than the sequential version.
5. Conclusions. An efficient sequential solution already existed for the problem in question, yet the per-
formance has been significantly enhanced by the GPU implementation. However, it has not been found to be
trivial to obtain good results, in particular the use of different components of the memory hierarchy within the
GPU was critical. Future work will look at the other programs within the R-matrix codes.
When trying to identify whether it is likely to be
worth investing the effort of producing a bespoke GPU-

Best execution times

based version of an exiting algorithm (there is a growing Environment Time (seconds)
collection of pre-built numerical libraries for GPUs, e.g., Host (Double Precision) 2100
CUBLAS [4] and HONEI [12]), the following consider- - —

ations should be borne in mind. Does the bulk of the Host (Single Precision) 1460
computation consist of many (3> 1000) executions of the GPU (Global Memory)? 530
same code for different data? Are these executions inde-

pendent? Are the executions SIMD, i.e., is the flow of GPU (Texture Memory)* 75

control independent of the data? Is there significant re-
use of input data across different executions? Is there a significant amount of computation for each item of input
and output data? Is single precision arithmetic acceptable?

If most (ideally all) of the questions can be answered in the affirmative, it would seem that a GPU imple-
mentation is worth considering.

References

1. Parallel linear algebra software for multicore architectures (PLASMA) (http://icl.cs.utk.edu/plasma/, visited 14
September, 2009).

2. Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien Langou, Piotr Luszczek, and
Stanimire Tomov. Accelerating scientific computations with mixed precision algorithms // Computer Physics Com-
munications, In Press, 2008. DOI: 10.1016/j.cpc.2008.11.005.

3. V.M. Burke, C.J. Noble, V. Faro-Maza, A. Maniopoulou, and N.S. Scott. FARM_2DRMP: A version of FARM for
use with 2DRMP // Computer Physics Communications, In Press, Accepted Manuscript, 2009.

DOI: 10.1016/j.cpc.2009.07.017.

4. nVidia Corporation. CUBLAS library (http://www.nvidia.com/, visited 18 September, 2009).

5. nVidia Corporation. nVidia CUDA compute unified device architecture programming guide (version 2.0)
(http://www.nvidia.com/cuda, visited 18 September, 2009).

6. John D. Owens, Mike Houston, David Luebke, Simon Green, John F. Stone, and James C. Phillips. GPU comput-
ing // Proceedings of the IEEE, 96: 879-899, 2008.

7. Tirath Ramdas, Gregory K. Egan, David Abramson, and Kim K. Baldridge. On ERI sorting for SIMD execution of
large-scale hartree-fock SCF // Computer Physics Communications, 178 (11): 817-834, 2008.

DOI: 10.1016/j.cpc.2008.01.045.

8. N.S. Scott, V. Faro-Maza, M.P. Scott, T. Harmer, J.M. Chesneauzx, C. Denis, and F. Jézéquel. E-collisions using
e-science // Physics of Particles and Nuclei Letters, 5 (3): 150-156, May 2008. DOI1:10.1134/S1547477108030023.

9. N.S. Scott, L.Gr. Izaru, C. Denus, F. Jézéquel, J.-M. Chesneauz, and M.P. Scott. High performance computation
and numerical validation of e-collision software // In G Maroulis and T Simos, editors, Trends and Perspectives in
Modern Computational Science, Invited lectures, Vol. 6 of Lecture Series on Computer and Computational Sciences,
pages 561-570, 2006.

10. N.S. Scott, F. Jézéquel, C. Denis, and J.-M. Chesneaux. Numerical ‘health check’ for scientific codes: the CADNA
approach // Computer Physics Communications, 176 (8): 507-521, 2007. DOI: 10.1016/j.cpc.2007.01.005.

11.N.S. Scott, M.P. Scott, P.G. Burke, T. Stitt, V. Faro-Maza, C. Denis, and A. Maniopoulou. 2DRMP: A suite of
two-dimensional R-matrix propagation codes // Computer Physics Communications, In Press, Accepted Manuscript,
2009. DOI: 10.1016/j.cpc.2009.07.018.

12. Danny van Dyk, Markus Geveler, Sven Mallach, Dirk Ribbrock, Dominik Goddeke, and Carsten Gutwenger. HONEI:
a collection of libraries for numerical computations targeting multiple processor architectures // Computer Physics
Communications, In Press, 2009. DOT: 10.1016/j.cpc.2009.04.018.

Received November 2, 2009

3Using 1920 GPU threads.
4Using 3840 GPU threads.



