
¢»·¨±«¨²¥«¼»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ¨¥. 2009. �. 10 385��� 519.644����� ���������� ���������������������� ����������:��������� �������������� �� ����������� �����������1�. �¯¥±2, �. �ª®²²2, �. �¨«« 2�°¨¬¥¥¨¥ ¬¥²®¤  R-¬ ²°¨¶» ª ¨§³·¥¨¾ ° ±±¥¨¢ ¨¿ ½«¥ª²°®®¢ ¯°®¬¥¦³²®·»µ ½¥°£¨©   ²®¬¥ ¢®¤®°®¤  ¯°¨¢®¤¨² ª ¥®¡µ®¤¨¬®±²¨ ¢»·¨±«¥¨¿ ¡®«¼¸®£® ª®«¨·¥±²¢  ¤¢³µ½«¥ª²°®-»µ ¨²¥£° «®¢ ®² ·¨±«®¢»µ ¡ §¨±»µ ´³ª¶¨©. � ¦¤»© ¨§ ½²¨µ ¨²¥£° «®¢ ¬®¦¥² ¡»²¼¢»·¨±«¥ ¥§ ¢¨±¨¬® ®² ®±² «¼»µ, ·²® ¯®§¢®«¿¥² ½´´¥ª²¨¢® ° ±¯ ° ««¥«¨²¼ ¯°®¶¥¤³°³ ¢»-·¨±«¥¨©. � ±±¬ ²°¨¢ ¥²±¿ ¯ ° ««¥«¼ ¿ °¥ «¨§ ¶¨¿ ½²®© ¯°®¶¥¤³°», ¨±¯®«¼§³¾¹ ¿ £° ´¨·¥-±ª¨© ¯°®¶¥±±®° (GPU) ¢ ª ·¥±²¢¥ ±®¯°®¶¥±±®° , ·²® ¯°¨¬¥°® ¢ 20 ° § ³±ª®°¿¥² ¢»·¨±«¥¨¿ ¯®±° ¢¥¨¾ ± ¯®±«¥¤®¢ ²¥«¼®© ¢¥°±¨¥©. �° ²ª® ®¯¨±»¢ ¾²±¿ ®±®¡¥®±²¨ ¢»¯®«¿¥¬»µ ° ±-·¥²®¢, ª®²®°»¥ ¤¥« ¾² ¯°¨¬¥¥¨¥ GPU ¯®¤µ®¤¿¹¨¬ ¤«¿ ½´´¥ª²¨¢®£® °¥¸¥¨¿ °¿¤  ¤°³-£¨µ ¢»·¨±«¨²¥«¼»µ § ¤ ·. �² ²¼¿ °¥ª®¬¥¤®¢   ª ¯¥· ²¨ ¯°®£° ¬¬»¬ ª®¬¨²¥²®¬ ¬¥¦-¤³ °®¤®©  ³·®© ª®´¥°¥¶¨¨ \� ²¥¬ ²¨·¥±ª®¥ ¬®¤¥«¨°®¢ ¨¥ ¨ ¢»·¨±«¨²¥«¼ ¿ ´¨§¨ª 2009" (MMCP2009, http://mmcp2009.jinr.ru).�«¾·¥¢»¥ ±«®¢ : ·¨±«¥®¥ ¨²¥£°¨°®¢ ¨¥, ¬¥²®¤ R-¬ ²°¨¶», ¯ ° ««¥«¼ ¿ °¥ «¨§ ¶¨¿, GPU.1. Introduction. For the last two decades, most software applications have enjoyed regular performancegains, with little or no software modi�cation, as each successive generation of microprocessors delivered fasterCPUs. However, system builders have now hit physical limits which have slowed the rate of increase of CPUperformance and the computing industry is moving inexorably towards multiple cores on a single chip. Never-theless, general purpose many-core processors may not deliver the capability required by leading-edge researchapplications. High performance may be more cost-e�ectively achieved in future generation systems by hetero-geneous accelerator technologies such as General Purpose Graphical Processing Units (GPGPUs), STI's Cellprocessors and Field Programmable Gate Arrays (FPGAs).Innovative algorithms, software and tools are needed so that HPC application scientists can e�ectivelyexploit these emerging technologies. Recent progress in this area includes: Ramdas et al. [7] who emphasize theimportance of SIMD algorithms; Baboulin et al. [2] who illustrate the potential of mixed-precision algorithms;and the development of numerical libraries that can e�ectively exploit multi-core architectures such as PLAMSAfrom the Innovative Computing Laboratory [1] and HONEI by van Dyk et al. [12].In this paper we describe initial work on deploying the Fortran suite 2DRMP [3, 11] on NVIDIA GPUs.2DRMP is a collection of two-dimensionalR-matrix propagation programs aimed at creating virtual experimentson high performance and grid architectures to enable the study of electron scattering from H-like atoms andions at intermediate energies [8]. We focus on one of the identi�ed hot-spots [9], namely, the computation of two-dimensional radial or Slater integrals that occur in the construction of Hamiltonian matrices. Using the 2DRMPto model electron scattering by a hydrogen atom requires the calculation (by numerical quadrature) of millionsof integrals of the form I(n1; l1; n2; l2; n3; l3; n4; n4; �) = aZ0 un1l1(r)un3l3 (r)�r���1I1+ r�I2� dr, where the innerintegrals I1 and I2 are I1(r) = rZ0 t�un2l2 (t)un4l4 (t) dt, I2(r) = aZr t���1un2l2 (t)un4l4(t) dt and the requiredvalues of the orbital functions unl are computed numerically and tabulated in advance. The integrations arecarried out numerically using Simpson's Rule and they all use the same mesh of typically 1001 values of r.It would appear that at each quadrature point of the outer integral I the calculation of two inner integrals I1and I2 is required, leading to a complexity for the entire algorithm of O(N2), where N is the number of data1Work partially supported by U.K. Engineering and Physical Sciences Research Council (EPSRC) undergrants EP/F010052/1, EP/G00210X/1.2 School of Electronics, Electrical Engineering & Computer Science, The Queen's University of Belfast,Belfast BT7 1NN, UK; �. �¯¥±, ¯°®´¥±±®°, e-mail: i.spence@qub.ac.uk; �. �ª®²², ¯°®´¥±±®°, e-mail:ns.scott@qub.ac.uk; �. �¨«« , ¯°®´¥±±®°, e-mail: c.gillan@ecit.qub.ac.ukc � ³·®-¨±±«¥¤®¢ ²¥«¼±ª¨© ¢»·¨±«¨²¥«¼»© ¶¥²° ��� ¨¬. �.�. �®¬®®±®¢ 



386 ¢»·¨±«¨²¥«¼»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ¨¥. 2009. �. 10points. However, because the same mesh is used for both inner and outer integrals, it is possible to coalesce theinner and outer loops giving a complexity which is O(N ).For further details, see Scott et. al. [11].2. Graphical Processing Unit.Graphical Processing Units, which are co-processors providing signi�cantoating-point capability originally developed to support computationally intensive graphics for computer gam-ing, have attracted signi�cant recent interest from the scienti�c computing community [6]. The computationalcapacity for a relatively modest expenditure makes them a very attractive proposition, but attempts to usethem for general-purpose computing have met with varying degrees of success.The nVidia GeForce 8800 GTX used in this experiment has 768 MB of global memory, and all communi-cation of data between the host computer and the GPU is by writing to and reading from this memory. Thedevice has 128 processors (in groups of 8, each group constituting a multiprocessor) [5].
Fig. 1. Co-operation between host and GPU

The processors all have accessto the global memory, and there isalso 8 KB of local on-chip memoryon each multiprocessor which is muchfaster but can only be accessed bythreads running on that multiproces-sor. The programming model is thatinput data is copied to the deviceglobal memory and then many copiesof the same function are executed asconcurrent threads on the di�erentprocessors, with results being writ-ten back to global memory. Finally,results are copied to the host fromglobal memory. In order to compen-sate for the relatively slow access toglobal memory, it is important to usethe local memory where possible. Inaddition, the GPU is able to inter-leave communication and computa-tion and so it is recommended thatthere are many more threads of ex-ecution than there are physical pro-cessors.It is important to note that on a given multiprocessor the execution is forced to be Single InstructionMultiple Data (SIMD) and that if one thread of execution is, for example, executing more iterations of a loopthan the others, none of the threads will continue to the next statement in the program until all are ready todo so. This can have a signi�cant impact on performance.3. GPU Algorithm. There is no interaction amongst the calculations of the separate integrals, makingthis an obvious candidate for a parallel implementation with each integral being calculated within a separatethread. For an e�cient GPU version of the algorithm, as mentioned above, it is essential that the parallelexecution can be made SIMD, that is that each thread executes the same sequence of instructions. The controlstatements within the integration code consist only of for statements with �xed bounds. There are no whileor if statements and so SIMD execution is achievable.In the original program, there is a double loop over the rows and columns of the Hamiltonian matrix. Foreach matrix element, multiple integrals are evaluated and incorporated into the matrix immediately, which caninvolve some further simple arithmetic, depending on the particular element.for (: : :)f n1 = : : :; : : :; l4 = : : :; � = : : :; factor = : : :; mpos = : : :;result = I(n1; l1; n2; l2; n3; l3; n4; l4; �);matrix[mpos] += result * factor : : :;g In order to exploit the parallelism of the GPU, it is important that the program be in a position to calculatethousands integrals at once on the GPU, and so a bu�er has to be placed between the loop over matrix elementswhich generates the parameters and the parallel evaluation of the integrals (see Fig. 1). A bu�er element has



¢»·¨±«¨²¥«¼»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ¨¥. 2009. �. 10 387to store details of the parameters and the operation which must be performed to incorporate the value of theintegral into the matrix.for (: : :)f n1 = : : :; : : : ; l4 = : : :; � = : : :; factor = : : :; mpos = : : :;buffer[bpos++] = (n1; : : : ; l4 , �, factor, mpos);gcopy buffer to GPU;perform integrals in parallel;copy results back;for (: : :)f factor = buffer[bpos].factor; mpos = buffer[bpos].mpos;result = results[bpos];hmat[mpos] += result * factor : : : ;g 3.1. GPU Issues. Several problems arose because of constraints of the hardware platform, namely:(i) the GPU (nVidia GeForce 8800) does not support double precision arithmetic;(ii) the access to device global memory is relatively slow.
Fig. 2. Wall clock execution times for 99 million integrals

3.1.1. Single Precision. The original pro-gram was written to use double precision oat-ing point numbers but double precision arithmeticwas not supported by the GPU and single preci-sion had to be used instead. The precision of theresults was still acceptable but there were initiallysome problems with underow and overow whencalculating r� which required the algorithm to bere-cast. A tool such as CADNA [10] is essential tovalidate the e�cacy of the single precision algo-rithm.nVidia cards are now available which supportdouble precision but as yet the extent of paral-lelism supported is signi�cantly less then for singleprecision (8 times less on the GTX280).3.1.2. Memory Access. The recommendedtechnique for overcoming the delays introduced byaccessing device global memory is �rst to copydata to local on-chip memory which can be ac-cessed much more quickly. For this to be possible, the amount of data required has to �t in the availablememory (8 KB per multiprocessor) and, for it to be e�ective, each value should be accessed multiple times by aparticular thread. In each integral, approximately 4,000 oating point values (16 KB) are required and typicallyeach value is only accessed twice, so neither of these criteria was satis�ed in this instance.There is however an additional method provided by CUDA for reducing memory access times. Data can bestored in texture memory provided that it is not modi�ed by the GPU code. This is still device global memorybut, because it is guaranteed to be constant during the execution of a given kernel function, it can be e�cientlycached for access by multiple threads on the same multiprocessor. This is reported to be particularly e�ectivewhen there is locality of access to data across multiple threads, which does arise with this application when thevalues unl of the orbital functions are placed in texture memory.4. Results. The host machine on which these experiments were carried out has a 3 GHz processor with 4cores, although no use was made of the multiple cores during the experiments described here. The GPU was anVidia GeForce 8800 GTX. The problem instance required the calculation of some 99 million integrals.As illustrated in Fig. 2, the number of GPU threads used made little di�erence when the orbitals were allaccessed directly from global memory. When texture memory was used, the execution time did decrease as thenumber of threads increased until there were nearly 4,000 threads. The table lists the execution times using theoptimal number of GPU threads.Using single precision arithmetic on both platforms, it can be seen that the GPU version with 3980 threads



388 ¢»·¨±«¨²¥«¼»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ¨¥. 2009. �. 10is approximately 20 times faster than the sequential version.5. Conclusions. An e�cient sequential solution already existed for the problem in question, yet the per-formance has been signi�cantly enhanced by the GPU implementation. However, it has not been found to betrivial to obtain good results, in particular the use of di�erent components of the memory hierarchy within theGPU was critical. Future work will look at the other programs within the R-matrix codes.Best execution timesEnvironment Time (seconds)Host (Double Precision) 2100Host (Single Precision) 1460GPU (Global Memory)3 530GPU (Texture Memory)4 75When trying to identify whether it is likely to beworth investing the e�ort of producing a bespoke GPU-based version of an exiting algorithm (there is a growingcollection of pre-built numerical libraries for GPUs, e.g.,CUBLAS [4] and HONEI [12]), the following consider-ations should be borne in mind. Does the bulk of thecomputation consist of many (� 1000) executions of thesame code for di�erent data? Are these executions inde-pendent? Are the executions SIMD, i.e., is the ow ofcontrol independent of the data? Is there signi�cant re-use of input data across di�erent executions? Is there a signi�cant amount of computation for each item of inputand output data? Is single precision arithmetic acceptable?If most (ideally all) of the questions can be answered in the a�rmative, it would seem that a GPU imple-mentation is worth considering.References1. Parallel linear algebra software for multicore architectures (PLASMA) (http://icl.cs.utk.edu/plasma/, visited 14September, 2009).2. Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julie Langou, Julien Langou, Piotr Luszczek, andStanimire Tomov. Accelerating scienti�c computations with mixed precision algorithms // Computer Physics Com-munications, In Press, 2008. DOI: 10.1016/j.cpc.2008.11.005.3. V.M. Burke, C.J. Noble, V. Faro-Maza, A. Maniopoulou, and N.S. Scott. FARM 2DRMP: A version of FARM foruse with 2DRMP // Computer Physics Communications, In Press, Accepted Manuscript, 2009.DOI: 10.1016/j.cpc.2009.07.017.4. nVidia Corporation. CUBLAS library (http://www.nvidia.com/, visited 18 September, 2009).5. nVidia Corporation. nVidia CUDA compute uni�ed device architecture programming guide (version 2.0)(http://www.nvidia.com/cuda, visited 18 September, 2009).6. John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU comput-ing // Proceedings of the IEEE, 96: 879{899, 2008.7. Tirath Ramdas, Gregory K. Egan, David Abramson, and Kim K. Baldridge. On ERI sorting for SIMD execution oflarge-scale hartree-fock SCF // Computer Physics Communications, 178 (11): 817{834, 2008.DOI: 10.1016/j.cpc.2008.01.045.8. N.S. Scott, V. Faro-Maza, M.P. Scott, T. Harmer, J.M. Chesneaux, C. Denis, and F. J�ez�equel. E-collisions usinge-science // Physics of Particles and Nuclei Letters, 5 (3): 150{156, May 2008. DOI:10.1134/S1547477108030023.9. N.S. Scott, L.Gr. Ixaru, C. Denis, F. J�ez�equel, J.-M. Chesneaux, and M.P. Scott. High performance computationand numerical validation of e-collision software // In G Maroulis and T Simos, editors, Trends and Perspectives inModern Computational Science, Invited lectures, Vol. 6 of Lecture Series on Computer and Computational Sciences,pages 561{570, 2006.10.N.S. Scott, F. J�ez�equel, C. Denis, and J.-M. Chesneaux. Numerical `health check' for scienti�c codes: the CADNAapproach // Computer Physics Communications, 176 (8): 507{521, 2007. DOI: 10.1016/j.cpc.2007.01.005.11.N.S. Scott, M.P. Scott, P.G. Burke, T. Stitt, V. Faro-Maza, C. Denis, and A. Maniopoulou. 2DRMP: A suite oftwo-dimensional R-matrix propagation codes // Computer Physics Communications, In Press, Accepted Manuscript,2009. DOI: 10.1016/j.cpc.2009.07.018.12.Danny van Dyk, Markus Geveler, Sven Mallach, Dirk Ribbrock, Dominik G�oddeke, and Carsten Gutwenger. HONEI:a collection of libraries for numerical computations targeting multiple processor architectures // Computer PhysicsCommunications, In Press, 2009. DOI: 10.1016/j.cpc.2009.04.018. Received November 2, 20093Using 1920 GPU threads.4Using 3840 GPU threads.


