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SIMULATION OF A SHOCK WAVE INTERACTION WITH A BOUNDED
INHOMOGENEOUS GAS–PARTICLE LAYER USING THE HYBRID

LARGE-PARTICLE METHOD

D. V. Sadin1, I. O.Golikov2, and V.A. Davidchuk3

The problems of shock wave interaction with a bounded layer of gas suspension is studied in the case
when a square-section inhomogeneity of reduced or increased density is situated inside this layer.
The hybrid large-particle method of the second-order approximation in space and time is used for
calculations. The numerical correctness of discontinuous solutions, in particular jumps of porosity,
is confirmed by comparison with the asymptotically exact profiles of the mixture density. Analytical
dependences of shock wave attenuation by a gas suspension layer are given. Shock-wave structures
in two-dimensional regions and the effect of relaxation processes on them are analyzed.

Keywords: hybrid large-particle method, inhomogeneous gas–particle layer, shock wave, relaxation,
asymptotically exact solution.

1. Introduction. Unsteady flow of gas suspensions with shock waves and contact discontinuities are of
practical interest in a number of applications related to spraying technologies, production of solid fuel rocket
boosters, gas transport of bulk materials, assessment of potential consequences at explosive production facilities,
protection of items by disperse barrier formations, etc.

Numerical modeling of non-equilibrium flows of gas mixed with particles encounters a number of funda-
mental difficulties, for example, in comparison with classical computational fluid dynamics. One of these factors
is the non-conservative nature of the subsystems of the phase momentum equations associated with the change
in the gas flow tube (the Archimedes force): 𝑝∇𝛼1, where 𝑝 is the gas pressure and 𝛼1 is its volume fraction. No
transformations have been found to date that would lead the conservation laws of two-phase media expressed
in a sufficiently general form to a divergent form of notation. Conservativity has been achieved for a special
case described by Rozhdestvensky and Yanenko [1] with regard to the conservation laws for the systems of
two-phase medium equations [2]. In some works, the gas suspension dynamics are formulated in divergent form
by neglecting the Archimedes force in the gas phase equations [3, 4], which seems to be true for small porosity
gradients. We must note that the non-conservativity problem arises primarily for discrete models that require
a fully divergent flow notation of the equations and rely on a characteristic representation and on the solution
of the discontinuity decomposition problem (the Riemann solvers) [5–7].

In various mathematical formulations of non-equilibrium gas suspension dynamics, the gas and particles
each have their own velocities and temperatures, including an equal pressure term [8–10] or two pressure terms
for each phase [11–13]. In the disperse phase, the pressure arises as a result of random collisions of particles in
motion, like in the kinetic molecular theory of gases. The problem of mathematical description of chaotic motion
of particles in a carrier gas remains open up to date. Gol’dshtik [14] proposed a mechanism for generating a
“boiling” particle layer due to the action of Magnus forces. Further, in [15, 16] the authors considered the physical
effects of vortex flows around disperse particles resulting from longitudinal and transverse force fluctuations at
Reynolds phase slip number Re12 > 200. Kinetic molecular approaches to describing dynamic processes in
colliding media are developed in [3, 4, 11–14, 17, 18]. Collision-free models of the “dusty” gas and some systems
of equation systems describing the motion with two pressure terms are non-hyperbolic in the general case [19–
21]. The conservation laws of two-phase media of hyperbolic type are applied and developed in a number of
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studies [5–7, 22, 23]. The consideration of inertial effects (the added mass forces) in the flow of dispersed
particles leads to a “non-classical” characteristic representation of the conservation laws [24].

Another problem in the computational dynamics of heterogeneous media is related to stiffness, i.e., to a
substantial difference in the characteristic temporal scales when the phase relaxation times are much shorter
than the gas dynamic scale of perturbation propagation within the computational cell. A number of highly stable
discrete models are proposed for meaningful formulations of problems [25–30]. One the useful computational
properties of the scheme is its K-stability [31, 32]. The informal meaning of this property is that the stability
is determined only by the gas dynamic scale of the discrete problem (the Courant–Friedrichs–Lewy condition)
and does not depend on the phase relaxation times. In the case of intense phase interaction, traditional discrete
models are no longer applicable because of unacceptably small time steps.

The interaction between a shock wave and a layer or cloud of gas with suspended particles is studied
in [33–37]. Our study considers the shock wave motion in a porosity discontinuity medium. We analyze the
accuracy of the hybrid large-particle method and the convergence of the numerical solution to an asymptotically
exact equilibrium solution for small dispersed particle sizes. The problems of refraction of an incident shock
wave on square cross-sectional heterogeneities with reduced or increased density are studied in two-dimensional
regions.

2. Basic equations. Let us consider the conservation laws for a calorically perfect gas and solid incom-
pressible particles in the multifluid formulation [30]:

𝜕q

𝜕𝑡
+ ∇𝑑G + B (∇𝑑F) = H (q) , (1)

q = [𝜌1, 𝜌2, 𝜌1𝑣1, 𝜌2𝑣2, 𝜌2𝑒2, 𝜌1𝐸1 + 𝜌2𝐾2]
T,

G = [𝜌1𝑣1, 𝜌2𝑣2, 𝜌1𝑣1𝑣1, 𝜌2𝑣2𝑣2, 𝜌2𝑒2𝑣2, 𝜌1𝐸1𝑣1 + 𝜌2𝐾2𝑣2]
T,

F = [0, 0, 𝑝, 𝑝, 0, 𝑝 (𝛼1𝑣1 + 𝛼2𝑣2)]
T, H = [0, 0,−F𝜇,F𝜇, 𝑄𝑇 ,−𝑄𝑇 ]

T,

∇𝑑 = diag (∇·,∇·,∇,∇,∇·,∇·), B = diag [1, 1, 𝛼1, 𝛼2, 1, 1],

𝜌𝑖 = 𝜌∘𝑖𝛼𝑖, 𝛼1 + 𝛼2 = 1, 𝐸𝑖 = 𝑒𝑖 +𝐾𝑖, 𝐾𝑖 = 𝑣2
𝑖 /2, 𝑖 = 1, 2.

Here the lower indices 1 and 2 at the bottom refer to the carrier and dispersed phase parameters, respectively; ∇
is the Hamiltonian operator. By 𝛼𝑖, 𝜌

∘
𝑖 , 𝜌𝑖,𝑣𝑖, 𝐸𝑖, 𝑒𝑖,𝐾𝑖, and 𝑝 we denote the volume fraction, true and reduced

densities, velocity vector, total, internal and kinetic energies of unit mass of the 𝑖th phase, and the gas pressure;
F𝜇 and 𝑄𝑇 are the viscous component of the interphase interaction force and the heat exchange capacity
between the gas and the particles per unit volume; and 𝑡 is time.

The constitutive equations of system (1) are the equations of state of ideal calorically perfect gas and
incompressible solid particles: 𝑝 = (𝛾1 − 1)𝜌∘1𝑒1, 𝑒1 = 𝑐𝑣𝑇1, 𝑒2 = 𝑐2𝑇2, {𝛾1, 𝑐𝑣, 𝑐2, 𝜌∘2} ≡ const, where 𝑇1 and 𝑇2
are the temperatures of the carrier phase and the particles; 𝛾1 and 𝑐𝑣 is the ratio of specific heats or the adiabatic
exponent and the specific heat capacity of the gas at constant volume; and 𝑐2 is the specific heat capacity of
the particles. The force and thermal phase interactions F𝜇 and 𝑄𝑇 can be found by the formulas [38]

F𝜇 = (3/8)(𝛼2/𝑟)𝐶𝜇𝜌1𝑤12 |𝑤12| , 𝑤12 = 𝑣1 − 𝑣2, 𝑄𝑇 = (3/2)(𝛼2/𝑟
2)𝜆1Nu1(𝑇1 − 𝑇2).

Here 𝑟 is the particle radius, 𝜆1 is the thermal conductivity of the gas, 𝐶𝜇 and Nu1 are the drag coefficient and
the Nusselt number determined empirically [38].

3. Hybrid large-particle method. Here we briefly describe the algorithm of the hybrid large-particle
method [39] for a one-dimensional case; its generalization to spatial orthogonal meshes is fulfilled without
significant difficulties. A uniform grid with cell size ℎ is used in the calculations. The integer indices refer to
the center of the cell 𝑥𝑛, whereas the half-integer indices refer to its faces 𝑥𝑛±1/2 = 𝑥𝑛 ±ℎ/2. The time layer 𝑡𝑘

is numbered by the upper index 𝑘, whereas the time step is denoted by 𝜏 = 𝑡𝑘+1 − 𝑡𝑘.
The algorithm consists of a predictor step splitted into Lagrangian (0), Eulerian and final (1) stages:

q(0)
𝑛 −H

(︁
q(0)
𝑛

)︁
𝜏 = q𝑘

𝑛 −B𝑘
𝑛

(︁
F̃𝑘

𝑛+1/2 − F̃𝑘
𝑛−1/2

)︁
𝜏/ℎ, (2)

q(1)
𝑛 = q(0)

𝑛 −
(︁
Ĝ

(0)
𝑛+1/2 − Ĝ

(0)
𝑛−1/2

)︁
𝜏/ℎ, (3)
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and the corrector step to determine the final values of the sought functions with 𝑂
(︀
ℎ2 + 𝜏2

)︀
total approximation

on smooth solutions:

q(2)
𝑛 − 0.5H

(︁
q(2)
𝑛

)︁
𝜏 = 0.5

(︁
q𝑘
𝑛 + q(1)

𝑛

)︁
− 0.5

(︁
F̃

(1)
𝑛+1/2 − F̃

(1)
𝑛−1/2

)︁
𝜏/ℎ, (4)

q𝑘+1
𝑛 = q(2)

𝑛 − 0.5
(︁
Ĝ

(2)
𝑛+1/2 − Ĝ

(2)
𝑛−1/2

)︁
𝜏/ℎ. (5)

Remark 1. In order to ensure the monotonicity of the numerical solution at the Lagrangian stage, a
nonlinear artificial viscosity 𝑄𝑛±1/2 with the Christensen limiter 𝜓𝑣 [40] is introduced:

𝑝𝑛±1/2 = 𝑝𝑛±1/2 + (1 − 𝜓𝑣)𝑄𝑛±1/2.

At the Eulerian stage, the hybrid flux scheme

Ĝ𝑛±1/2 = (1 − 𝜓𝑓 )GUpwind
𝑛±1/2 + 𝜓𝑓G

Centered
𝑖±1/2

with the limiter 𝜓𝑓 is used.
Remark 2. The high stability of the scheme is achieved by the implicit accounting of the source terms

H (q𝑛) (interphase friction and heat transfer) [25]. In order to eliminate the iterative procedures, we use the
H (q𝑛) linearization and take into account the linear part implicitly [26].

The time step is determined from the Courant–Friedrichs–Lewy condition for a “pure” gas:

𝜏𝑘 = CFL
ℎ

max
∀𝑛

(︀
|𝑣𝑘𝑛| + 𝑎𝑘1,𝑛

)︀ ,
where CFL is a fixed Courant number (its recommended value is 6 0.5) and 𝑎𝑘1,𝑛 is the sound speed in the gas
phase at the point

(︀
𝑥𝑛, 𝑡

𝑘
)︀
.

Our calculations were performed with the Courant number CFL = 0.4. For the nonlinear correction of
the scheme, we use the Van Leer flux limiter 𝜓𝑓 = (𝑟 + |𝑟|) / (1 + 𝑟) in (3) and (5) and the Superbee viscosity
limiter 𝜓𝑣 = max [min (2𝑟, 1) ,min (𝑟, 2) , 0] in (2) and (4), where 𝑟 is the ratio of the parameter’s inclinations at
the cell face [41].

4. Equilibrium solutions. We assume that the flow is equilibrium with respect to velocities 𝑢 = 𝑢1 = 𝑢2
and phase temperatures 𝑇 = 𝑇1 = 𝑇2. This assumption is true when the phase relaxation times are much smaller
than the time scale of the problem. Suppose the two-phase medium flow is characterized by constant parameters
on the left (𝑝𝐿, 𝑢𝐿, 𝜌𝐿, 𝛼1𝐿) and on the right (𝑝𝑅, 𝑢𝑅, 𝜌𝑅, 𝛼1𝑅) of an arbitrary discontinuity for 𝑥 = 𝑥𝑐 and 𝑡 = 𝑡𝑐,
and also for 𝑝𝐿 > 𝑝𝑅 and 𝑢𝑅 = 0. Let us write out the formulas derived from the basic relations [42, 43] to
define the arbitrary discontinuity decomposition (Riemann problem) in an equilibrium two-phase medium.

In the case 𝑢𝐿 > 𝑢′, where

𝑢′ = (𝑝𝐿 − 𝑝𝑅)

√︃
𝜒𝐿 − 1

𝜌𝑅 (𝜅𝐿𝑝𝐿 + 𝑝𝑅)
,

a configuration with two shock waves (SS) with pressure 𝑃 , velocity 𝑈 and mixture densities 𝑅− and 𝑅+ to
the left and to the right of the contact discontinuity is realized. First, the pressure 𝑃 is found:

𝑢𝐿 − (𝑃 − 𝑝𝐿)

√︃
𝜒𝐿 − 1

𝜌𝐿 (𝜅𝐿𝑃 + 𝑝𝐿)
= (𝑃 − 𝑝𝑅)

√︃
𝜒𝑅 − 1

𝜌𝑅 (𝜅𝑅𝑃 + 𝑝𝑅)
.

Here 𝜒𝐽 = (𝛾*𝐽 + 2𝛼1𝐽 − 1) / (𝛾*𝐽 − 1), 𝜅𝐽 = (𝛾*𝐽 + 1) / (𝛾*𝐽 − 1) are auxiliary functions, 𝐽 is the area index (𝐿
or 𝑅), 𝛾* = 1 + (𝜁1𝑅1) / (𝜁1𝑐𝑣 + 𝜁2𝑐2) is the mixture polytropic exponent, 𝜁𝑖 = 𝜌𝑖/𝜌 are the mass concentrations
of phases, and 𝑅1 is the gas constant. Then, the other parameters are found:

𝑈 = 𝑢𝐿 − (𝑃 − 𝑝𝐿)

√︃
𝜒𝐿 − 1

𝜌𝐿 (𝜅𝐿𝑃 + 𝑝𝐿)
,

𝑅− = 𝜌𝐿
𝜅𝐿𝑃 + 𝑝𝐿

𝜒𝐿𝑝𝐿 +
𝛾*𝐿 − 2𝛼1𝐿 + 1

𝛾*𝐿 − 1
𝑃

, 𝛼1− = 1 − 𝑅−

𝜌𝐿
(1 − 𝛼1𝐿) ,
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𝑅+ = 𝜌𝑅
𝜅𝑅𝑃 + 𝑝𝑅

𝜒𝑅𝑝𝑅 +
𝛾*𝑅 − 2𝛼1𝑅 + 1

𝛾*𝑅 − 1
𝑃

, 𝛼1+ = 1 − 𝑅+

𝜌𝑅
(1 − 𝛼1𝑅) .

Using the obtained gas dynamic quantities, we can determine the Mach number and the velocities for the left
and right shock waves:

M− =

√︃
𝛼1𝐿

𝛼1−

(︂
𝛾*𝐿 + 2𝛼1− − 1

2𝛾*𝐿

𝑃

𝑝𝐿
+
𝛾*𝐿 − 2𝛼1− + 1

2𝛾*𝐿

)︂
, 𝐷− = 𝑢𝐿 − M−𝑎𝐿,

M+ =

√︃
𝛼1𝑅

𝛼1+

(︂
𝛾*𝑅 + 2𝛼1+ − 1

2𝛾*𝑅

𝑃

𝑝𝑅
+
𝛾*𝑅 − 2𝛼1+ + 1

2𝛾*𝑅

)︂
, 𝐷+ = M+𝑎𝑅,

where 𝑎𝐽 =
√︀
𝛾*𝐽𝑝𝐽/ (𝜌𝐽𝛼𝐽) is the sound speed in the domain 𝐽 .

In the case of 𝑢′′ 6 𝑢𝐿 < 𝑢′, where

𝑢′′ =
2𝑎𝐿𝛼𝐿

𝛾*𝐿 − 1

⎡⎢⎣1 −
(︂
𝑝𝑅
𝑝𝐿

)︂ 𝛾*
𝐿−1

2𝛾*
𝐿

⎤⎥⎦ ,
a configuration is formed with a rarefaction wave, a region of constant flow, a contact discontinuity, and a shock
wave (WS). The pressure 𝑃 is determined as a solution to the equation

𝑢𝐿 +
2𝑎𝐿𝛼1𝐿

𝛾*𝐿 − 1

⎡⎣1 −
(︂
𝑃

𝑝𝐿

)︂ 𝛾*
𝐿−1

2𝛾*
𝐿

⎤⎦ = (𝑃 − 𝑝𝑅)

√︂
𝜒𝑅 − 1

𝜌𝑅𝑃 + 𝑝𝑅
.

We also determine the other parameters behind the shock wave (marked by “+”) and in the constant flow zone
between the contact discontinuity and the rarefaction wave (marked by “−”):

𝑈 = (𝑃 − 𝑝𝑅)

√︃
𝜒𝑅 − 1

𝜌𝑅 (𝜅𝑅𝑃 + 𝑝𝑅)
,

𝑅+ = 𝜌𝑅
𝜅𝑅𝑃 + 𝑝𝑅

𝜒𝑅𝑝𝑅 +
𝛾*𝑅 − 2𝛼1𝑅 + 1

𝛾*𝑅 − 1
𝑃

, 𝛼1+ = 1 − 𝑅+

𝜌𝑅
(1 − 𝛼1𝑅) ,

𝑅− = 𝜌𝐿

[︃
𝛼2𝐿 + 𝛼1𝐿

(︂
1 − 𝛾*𝐿 − 1

2𝛼1𝐿

𝑈 − 𝑢𝐿
𝑎𝐿

)︂− 2
𝛾*
𝐿

−1

]︃−1

, 𝛼1− = 1 − 𝑅−

𝜌𝐿
(1 − 𝛼1𝐿) ,

M+ =

√︃
𝛼1𝑅

𝛼1+

(︂
𝛾*𝑅 + 2𝛼1+ − 1

2𝛾*𝑅

𝑃

𝑝𝑅
+
𝛾*𝑅 − 2𝛼1+ + 1

2𝛾*𝑅

)︂
, 𝐷+ = M+𝑎𝑅.

In the centered rarefaction wave region 𝑢𝐿 − 𝑎𝐿 6 (𝑥− 𝑥𝑐) / (𝑡− 𝑡𝑐) 6 𝑈 − 𝑎+, the solution is self-similar,

depending on the variable 𝜉′ =
𝑥− 𝑥𝑐

𝑎𝐿𝛼1𝐿 (𝑡− 𝑡𝑐)
−

M′
𝐿

𝛼1𝐿

:

[︂
(1 − 𝛼1𝐿)𝛼1

(1 − 𝛼1)𝛼1𝐿

]︂𝜔
=

𝛼1 + 𝜔

𝛼1 (1 − 𝜔𝜉′)
, 𝜔 =

𝛾*𝐿 − 1

2
,

M′ = M′
𝐿 +

2𝛼1𝐿

𝛾*𝐿 + 2𝛼1 − 1
(𝛼1𝜉

′ + 1), M′ =
𝑢

𝑎𝐿
, M′

𝐿 =
𝑢𝐿
𝑎𝐿

,

𝜌 = 𝜌𝐿
𝛼1

𝛼1𝐿

(︂
1 − 𝛾*𝐿 − 1

2𝛼𝐿
(M′ − M′

𝐿)

)︂ 1
𝜔

, 𝑝 = 𝑝𝐿

(︂
1 − 𝛾*𝐿 − 1

2𝛼𝐿
(M′ − M′

𝐿)

)︂ 𝛾*
𝐿
𝜔

.
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Figure 1. Shock wave interaction with a gas suspension layer:
a) lower density, b) higher density

Remark 3. For completeness, we formulate the condition for the fulfillment of the third case (two rar-

efaction waves WW): 𝑢′′′ 6 𝑢𝐿 < 𝑢′′, where 𝑢′′′ = −
2𝑎𝐿𝛼𝐿

𝛾*𝐿 − 1
−

2𝑎𝑅𝛼𝑅

𝛾*𝑅 − 1
.

Remark 4. When deriving the formulas for discontinuity decomposition, we use the property of con-
servation of phase mass concentrations along the mixture trajectory 𝑑𝜁2/𝑑𝑡 ≡ 𝜕𝜁2/𝜕𝑡 + 𝑢𝜕𝜁2/𝜕𝑥 = 0 and,
consequently, the invariance of the mixture polytropic exponent 𝑑𝛾* (𝜁2) /𝑑𝑡 = 0. From here, we come to the
equalities 𝛾*− = 𝛾*𝐿 and 𝛾*+ = 𝛾*𝑅.

Remark 5. The relations described above represent an asymptotically exact solution of the Riemann
problem for the full equations (1) of gas suspension dynamics as the particle diameter decreases: 𝑑→ 0.

Now we consider a one-dimensional version of interaction between a shock wave and a step of lower density
(case 1) or a step of higher density (case 2). The interaction of the shock wave whose Mach number is M0 = 1.22

with heterogeneities located in the region 𝑥2 6 𝑥 6 𝑥3 is illustrated in the 𝑥–𝑡 diagram (Fig. 1, the shock wave
trajectories and the rarefaction wave characteristics are shown in red and blue, respectively, and the contact
discontinuity trajectories are shown in green).

The flow is characterized by the initial state 0, 4 and 7 as well as by the parameters behind the incident
shock wave 1 refracted in layer 3 and passing through 6 and behind the reflected centered rarefaction wave
2 (the case of lower density) or 5 (the case of higher density). When an incident shock wave interacts with the
step considered above, two types of discontinuities occur: rarefaction wave–shock wave WS or two shock waves
SS (see the above computational relations).

The one-dimensional problems were solved with the initial conditions shown in Table 1.
The boundary conditions on the left and right are prescribed in the form of free inflow and outflow. For

the homogeneity of the algorithm, a negligibly small particle concentration 𝛼2 = 10−10 was specified in the
“pure” gas region. The parameters behind the incident shock wave (region 1, Fig. 1) were determined by the
following relations [30]:

M2
0 =

𝛼10

𝛾*0

[𝜒0 (𝛼20) + 1]𝛼21 − [𝜒1 (𝛼21) + 1]𝛼20

𝜒1 (𝛼21)𝛼20 − 𝛼21

𝛼21

𝛼21 − 𝛼20
,

Table 1

Initial conditions for one-dimensional problems (SI measurements)

Domain of definition (𝛼2, 𝑝, 𝑇1, 𝑇2, 𝑢1, 𝑢2)

before the shock wave
𝑥1 < 𝑥 < 𝑥2 и 𝑥 > 𝑥3

(︀
0.001, 1.01325 · 105, 293.23, 293.23, 0, 0

)︀
case 1(︀

10−10, 1.01325 · 105, 293.23, 293.23, 0, 0
)︀

case 2

behind the shock wave
𝑥 < 𝑥1

(︀
1.44442 · 10−3, 1.53851 · 105, 308.111, 308.111, 66.0650, 66.0650

)︀
case 1(︀

1.37636 · 10−10, 1.5906 · 105, 334.441, 334.441, 114.51, 114.51
)︀

case 2

heterogeneity
𝑥2 < 𝑥 < 𝑥3

(︀
10−10, 1.01325 · 105, 293.23, 293.23, 0, 0

)︀
case 1(︀

0.001, 1.01325 · 105, 293.23, 293.23, 0, 0
)︀

case 2
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Figure 2. Distributions of relative values of density 𝜌* and velocity 𝑢*

of gas suspension at the time instant 𝑡 = 0.001 s

𝜌1 = 𝜌0
𝛼21

𝛼20
, 𝑝1 = 𝑝0

𝜒0 (𝛼20)𝛼21 − 𝛼20

𝜒1 (𝛼21)𝛼20 − 𝛼21
, 𝑢1 =

√︂
𝑝1 − 𝑝0
𝜌0

𝛼10 − 𝛼11

1 − 𝛼11
.

In order to compare the numerical and analytical solutions, calculations were performed by the hybrid
large-particle method using the full equations (1) of non-equilibrium gas suspension dynamics in the shock-wave
refraction problem on the heterogeneities of lower or higher density. The results in the form of distributions
of relative values of density 𝜌* = 𝜌/𝜌1 and velocity 𝑢* = 𝑢/𝑎0 of the mixture of air and silica sand particles
with true density 𝜌∘2 = 2500 kg/m3 are illustrated in Fig. 2 (a, b for case 1; c, d for case 2). Here the solid
lines correspond to the exact solutions, whereas the dashed curves correspond to calculations for sufficiently fine
particles 𝑑 = 0.1 𝜇m on the 1/200 grid with the grid step ℎ = 2 mm. The computation final time is 𝑡 = 0.001 s.

The numerical results are found to be in good agreement with the self-similar solutions. When the
grid resolution is increased to 1/400, the calculated and analytical curves graphically coincide, the relative
discrepancy is of the order 10−4 at the characteristic points 0.3 and 0.7.

Of practical interest is the degree of shock wave attenuation in air when this shock wave passes through
the gas suspension layer, depending on the Mach number M0 and the volume concentration of the dispersed
phase in the heterogeneity 𝛼𝑠 = 𝛼24 (the indices correspond to the regions shown in Fig. 1b). The numerical
results obtained by the analytical relations for an equilibrium two-phase medium are shown in Fig. 3a and b,
where the dependencies of the shock wave attenuation 𝑝* = 𝑝6/𝑝1 and the dependences of the maximum gas
suspension layer compression 𝛼* = 𝛼23 on M0 are calculated for a fixed value of the initial volume fraction
𝛼𝑠 = 0.001 of particles in the layer. The fixed Mach number M0 = 1.5 of the incident shock wave is given in
Fig. 3 c, d. The parameters 𝑝* and 𝛼* were determined depending on the initial volume concentration 𝛼𝑠 of the
dispersed phase of the gas suspension layer.

As the Mach number increases, the compression of the gas suspension layer and the attenuation of the
incident shock wave also increase (Fig. 3 a and b), which can be explained by a more intense absorption of the
shock wave impulse by the mixture. As the initial particle concentration increases, so does the attenuation of
the incident shock wave; the intensity of the passed wave is about 30% lower in relation to the initial shock
wave for 𝛼𝑠 = 0.01 (Fig. 3 c). In this case, the layer compression is almost linear (Fig. 3 d).

5. A discussion of numerical two-dimensional solutions. Let’s consider a flat two-dimensional chan-
nel 1 (Fig. 4) with a stationary shock wave 2 moving in air with the Mach number 1.22 and interacting with a
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1.00
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Figure 3. Analytical dependencies of the shock wave attenuation degree 𝑝* and the maximum gas
suspension layer compression value 𝛼* depending: a), b) on the Mach number M0 for 𝛼𝑠 = 0.001;

c), d) on the initial volume concentration 𝛼𝑠 of particles for M0 = 1.5
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Figure 4. Computational scheme

Table 2

Initial conditions for the two-dimensional problems (SI measurements)

Domain of definition (𝛼2, 𝑝, 𝑇1, 𝑇2, 𝑢1, 𝑢2)

before the shock wave
(︀
10−10, 1.01325 · 105, 293.23, 293.23, 0, 0

)︀
behind the shock wave

(︀
1.37636 · 10−10, 1.5906 · 105, 334.441, 334.441, 114.51, 114.51

)︀
gas suspension layer

(︀
0.001, 1.01325 · 105, 293.23, 293.23, 0, 0

)︀
case 1(︀

0.0001, 1.01325 · 105, 293.23, 293.23, 0, 0
)︀

case 2

heterogeneity
(︀
10−10, 1.01325 · 105, 293.23, 293.23, 0, 0

)︀
case 1(︀

0.001, 1.01325 · 105, 293.23, 293.23, 0, 0
)︀

case 2

limited layer of gas suspension 3; in the layer, there is a square heterogeneity 4 with a lower (case 1) or higher
(case 2) density.

The initial conditions of two-dimensional problems are presented in Table 2.
The incompressible gas suspension particles have the density 𝜌∘2 = 2500 kg/m3 and the specific heat

capacity 𝑐2 = 710 J/(kg ·K).
The boundary conditions are specified as reflections on the walls and as free inflow and outflow on the left

and right of the computational domain. Calculations were performed up to the symmetry axis on a uniform
grid with a resolution of 200 cells per the heterogeneity size 𝐻 = 5 cm up to the time instant 𝑡𝑓 = 2.5 ms. In
the right side of the computational domain with the size 1.2𝐻, we use a non-uniform grid with the cell step ℎ
varying according to the dependence ℎ′𝑛+1 = ℎ′𝑛 + 0.5ℎ (where 𝑛 is the cell number).

First we consider the interaction between a shock wave and a gas suspension layer with a fine fraction
𝑑 = 0.1 𝜇m of particles. In this case, the flow of the mixture is close to equilibrium. The spatial relaxation
zones are sub-grid. The gas suspension behaves as a “heavy” gas with the special equation 𝑒 = 𝑝𝛼1/ [(𝛾* − 1) 𝜌]

of state (where 𝑒 is the internal energy of the mixture) [42, 43].
Figures 5 and 6 illustrate, respectively, the numerical solutions obtained for the heterogeneities with lower

and higher densities in the form of Schlieren images of the mixture density gradient function. Four characteristic
time instants are shown in these figures. After colliding the incident shock wave with the left boundary 𝑐1 of the
gas suspension layer, the discontinuity disintegration is observed with the reflected and passing shock waves 𝑠1.
When interacting the shock wave with the heterogeneity, then, there appear the WS-type (Fig. 5 a) or SS-type
decomposition (Fig. 6 a). The structures are formed, known as the von Neumann double refraction: with a
passing shock wave 𝑠2, a precursor, a Mach stem, and two curved shock waves (see 𝑁1 in Fig. 5 a and 𝑁2 in
Fig.6 a). Due to the different sound speeds in the heterogeneity and gas suspension layer, the shock wave 𝑠2
lags behind (in case 1) or is ahead (in case 2) of the external shock wave 𝑠1.

When the shock waves 𝑠3 and 𝑠4 move to the symmetry axis, the reflected waves 𝑠5 and the focusing effect
𝑓 are observed in the higher-density heterogeneity problem (Fig. 6 b and c). In case 1, the motion of the shock
waves 𝑠4 is of a divergent nature (Fig. 5 b and c). At the time instants being considered, the curvature of the
gas suspension layer surfaces is observed with the convexity along the flow for case 1 and against the flow for
case 2. After that, the contact boundaries 𝑐1 and 𝑐2 of the gas suspension layer are significantly deformed and
the Richtmyer-Meshkov instability as well as the turbulent multidirectional mushroom vortex structures 𝑡𝑢 are
developed (Fig. 5 d and Fig. 6 d).

As the gas suspension particles increase in size, the non-equilibrium effect (a difference in the velocities
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a) b) c) d)

Figure 5. Shock wave interaction with the lower-density heterogeneity (𝑑 = 0.1 𝜇m). The
numerical Schlieren images of the mixture density gradient function at the time instants:

a) 0.3 ms; b) 0.4 ms; c) 0.5 ms; d) 2.5 ms

a) b) c) d)

Figure 6. Shock wave interaction with the higher-density heterogeneity (𝑑 = 0.1 𝜇m). The
numerical Schlieren images of the mixture density gradient function at the time instants:

a) 0.26 ms; b) 0.4 ms; c) 0.5 ms; d) 2.5 ms

and temperatures of phases) begins to appear. Figure 7 shows the Schlieren images of the mixture density
gradient function as well as the distributions of the relative mixture density 𝜌 = 𝜌/𝜌1 on the symmetry axis for
the particle diameters 𝑑 = 0.1, 1, 2, 10 𝜇m at the time instant 𝑡 = 0.26 ms for case 2. The axial coordinate is
related to the size �̄� = 𝑥/𝐻 of the heterogeneity.

The relaxation processes for the mixture of a carrier gas and a group of particles are characterized by
the phase velocity and temperature equalization times [31]. Since their values are comparable in order for the
problem under consideration, we use the dynamic relaxation time of the disperse phase 𝑡(𝜇)2 = 𝜌∘2𝑑

2/ (18𝜇1𝛼1)

a) b) c) d)

e) f) g) h)

6 7 8𝑥
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Figure 7. Interaction of a shock wave with a higher density heterogeneity at the time instant
𝑡 = 0.26 ms. The numerical Schlieren images of mixture density gradient function as well as the

distributions of mixture density on the symmetry axis for the particle diameters:
a), e) 0.1 𝜇m; b), f) 1 𝜇m; c), g) 2 𝜇m; d), h) 10 𝜇m
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as a scale. The expression ℎ̄𝑟 =
(︁
𝑎10 3 𝑡

(𝜇)
2

)︁
/𝐻 can be considered as a good approximation for estimating the

relative spatial relaxation zone behind the shock wave; here 𝑎10 is the sound speed in the carrier gas. For the
studied range of particle sizes, the values of ℎ̄𝑟 are equal to 0.0016, 0.16, 0.64, and 16, which corresponds to the
computational domains of the mixture density profile “smearing” (Fig. 7). The structural features of the gas
suspension flow are characterized by two strong discontinuities 𝑠1 and 𝑠2 for 𝑑 = 0.1 𝜇m (Fig. 7 a and e), by a
strong discontinuity for the shock wave envelope 𝑠1 in the gas suspension layer, by a deteriorated (sound) wave
front in the heterogeneity 𝑠2 for 𝑑 = 1 and 2 𝜇m (Fig. 7 b, c, f, g), and by two shock waves 𝑠1 and 𝑠2 of finite
intensity for 𝑑 = 10 𝜇m (Fig. 7 d and h).

6. Conclusion. Asymptotically exact equilibrium solutions are obtained for a one-dimensional formula-
tion of the problem on the shock wave interaction with regions of lower or higher density. Our numerical results
obtained by the large-particle hybrid method using the non-equilibrium dynamic equations for a mixture of gas
and solid particles are in good agreement with the asymptotic solutions. The analysis of shock wave attenu-
ation by a layer of fine gas suspension for different Mach numbers and dispersed phase concentrations in the
heterogeneity is performed on the basis of self-similar relations.

The heterogeneous layer dynamics during the passage of a shock wave in two-dimensional regions is studied.
An estimate of the spatial relaxation zones for different particle sizes is obtained; this estimate is consistent with
our numerical simulation results. It was found that, depending on phase relaxation times, two flow modes are
realized: with two strong discontinuities or with the shock wave envelope together with a degenerate (sound)
wave front inside the heterogeneity.

The large-particle hybrid method shows a large stability margin and high resolution capability for detecting
the shock wave structures and the formation of Richtmyer-Meshkov instabilities. The method is universal and
allows solving an extended class of convection dominated problems of hyperbolic or mixed type in conservative
or non-divergent notation of equations. The problems we considered along with asymptotically exact solutions
can serve as a test for testing other difference schemes.
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