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SOFTWARE SUITE FOR NUMERICAL SIMULATION OF
THERMOPOROELASTIC MEDIUM WITH DAMAGE

A. S.Meretin1

In this paper we consider a software suite for numerical simulation of thermoporoelastic medium evo-
lution with damage. The model is a modification of the Biot model for thermoporoelastic medium
evolution and can be used for simulation of stress-strain medium behavior, fluid flow, non-isothermal
effects and damage. Damage of the medium is simulated within the framework of continuum damage
mechanics where state of the medium is described by a damage parameter. This parameter describes
degree of medium destruction. Evolution of the parameter is defined by kinetic equation. The com-
putational algorithm is based on the finite element method. Taylor-Hood finite elements with second
order of displacements approximation and first order of pressure and temperature approximation
are used. The system of equations is solved by using “monolithic” approach without iteration cou-
pling between groups of equations. Results of rock damage evolution due to thermal treatment are
presented.

Keywords: thermoporoelasticity, Biot model, damage, thermodynamic consistency principle, finite ele-
ment method

1. Introduction. Studying the damage occurring in materials under thermomechanical stress is a highly
relevant field of research in various areas of physics, which has an important applied value in metallurgy,
construction, hydrocarbon production and other industries. In particular, one of the top priority tasks in oil
engineering is the development of various techniques to increase oil recovery in low-permeability reservoirs. One
such technique is thermal recovery, in which a thermal fluid is pumped into the reservoir to increase oil mobility.
The thermal fluid is pumped under high pressure and has a much higher temperature than the reservoir. This
results in various processes occurring in the reservoir as a result of injection, such as rock deformation, filtration
and changes in physical and chemical properties of the reservoir fluids, changes in the temperature field, and
rock damage. Modeling the thermal recovery process, therefore, requires proper accounting of the interaction
between all the effects mentioned above.

There are currently a number of models describing the evolution of poroelastic medium taking into account
its damage. The main disadvantages of these models are that some of them are not generally appropriate from
the thermodynamic point of view [1, 2], while others [3] are more of a theoretical nature and are not suitable
for applied calculations.

This article presents a thermodynamically consistent mathematical model to describe the evolution of
thermoporoelastic medium taking into account deformation, fluid flow and non-isothermal processes, as well as
the damage of the medium. A computational algorithm is described for the model, which is implemented as a
software package in the C++ language, and examples of applied computations are provided.

2. Mathematical model. One of the classical models used commonly to describe the evolution of a
poroelastic medium is the Biot model [4]. In this model, the medium is represented as a combination of two
interrelated continuums: deformable solid phase (“skeleton”) and mobile liquid phase (“fluid”).

In its classical formulation, the system of Biot equations consists of the mass conservation law, which de-
scribes the filtration of fluid in a porous medium, and the momentum conservation law, which describes changes
in the stress-strain state. In the case of thermo-poroelastic medium, simulating non-isothermal effects requires
introducing an additional energy balance equation in the system. These equations express the fundamental
laws of continuous medium mechanics. To describe the features of specific media, the system of equations must
be supplemented with constitutive relations that impose restrictions on the material behavior under external
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stresses. A number of axioms [5] exist that describe the basic principles of building the constitutive relations the-
ory. One of these basic principles is the principle of thermodynamic consistency, which states that constitutive
relations must be compliant with the second law of thermodynamics for any sequence of process states.

To simulate the medium damage, it is necessary to expand the Biot model by introducing additional
assumptions about the process of damage evolution. There are two main approaches to mathematical description
of processes occurring during material damage. The first approach [6] considers damage as the development
of a finite set of large-scale cracks. Each crack is assumed to have certain boundaries and to grow when the
fracture criteria are met. This approach is commonly used in practice to describe the development of a finite
(small) number of isolated cracks, for example, in simulating the hydrofracturing process in oil and gas fields.

The second approach used in this paper is based on continuum damage mechanics [7, 8]. In this approach,
damage is seen as a reduction in the “effective” strength properties of the material, caused by the development
of numerous micro-fractures and pores. It is assumed that the “degree of damage” of the material is described
by an additional parameter (usually of tensor nature), called the damage parameter. The evolution of this
parameter is determined by the kinetic equation given, which describes the change in the damage parameter
depending on the current state of the medium. A detailed review of the existing models of damage parameter
evolution is given in [9].

The mathematical model described in detail in [9] is used below. Let’s consider a representative elementary
volume Ω with the boundary 𝜕Ω, consisting of two continuums: a deformable skeleton (“𝑠”) and a single-phase
weakly compressible fluid (“𝑓 ”). Assuming that spatial displacements are small and the influence of external
and inertial forces is negligible, the system of equations in the model is recorded in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑚𝑓

𝜕𝑡
+ div(𝜌𝑓𝑤) = 0,

div𝜎 = 0,

𝜕 (𝑚𝑠𝑒𝑠 + 𝑚𝑓𝑒𝑓 )

𝜕𝑡
+ div (𝜌𝑓𝑒𝑓𝑤) = div (−𝑝𝑤) − div(𝑞),

𝑤 = −𝑘
𝜇 grad(𝑝),

𝑞 = −𝜅 grad(𝑇 ),

𝐷 = 𝐷(𝜒),

(1)

where 𝑚𝑓 is the mass of the fluid in the elementary volume of the medium, 𝜌𝑓 is the fluid density, 𝑤 is the flow
rate, 𝜎 is the full stress tensor, 𝑒𝛼 is the specific internal energy of phase 𝛼, 𝑞 is the total heat flow density,
𝑘 is the positively determined permeability tensor, 𝜇 is the fluid viscosity, 𝜅 is the positively determined heat
conductivity tensor, 𝑇 is the temperature.

The last equation in system (1) describes the evolution of damage parameter 𝐷 (in this paper 𝐷 is assumed
to be a scalar value) as a function of the current state of medium 𝜒 (instantaneous damage kinetics). In general,
the kinetic equation for the damage rate parameter can be presented using the finite damage kinetics in the

form of 𝜏
𝑑𝐷

𝑑𝑡
= 𝐹 (𝜒), where 𝜏 is the relaxation time, 𝐹 is a certain function dependent on the state of the

medium [3]. The specific type of dependency used in this article will be described below.
The primary variables for the system of equations (1) are 𝜒 = {𝜀, 𝑝, 𝑇,𝐷}. The constitutive relations

are used to complete the system of equations (1). When deriving the constitutive relations, the main criteria
limiting their formula is the compliance with the thermodynamic consistency principle. The method of deriving
the constitutive relations is presented in detail in [9]. In this paper, the constitutive relations are presented in
their final form, as used further in the numerical algorithm:

∆𝜎 = 𝐶(1 −𝐷) : ∆𝜀− 𝑏∆𝑝−𝐶 :𝛼𝑇 ∆𝑇 −𝐶 : 𝜀0 : ∆𝐷,

∆𝑚𝑓 = 𝜌𝑓𝑏 : ∆𝜀 + 𝜌𝑓
∆𝑝

𝑀
− 𝛼𝑚𝜌𝑓∆𝑇,

∆
1

𝜌𝑓
= − 1

𝜌𝑓

1

𝐾𝑓
∆𝑝 +

1

𝜌𝑓
𝛼𝑓∆𝑇.

(2)

Here 𝐶 is the 4th rank elastic coefficient tensor, 𝑏 is the Biot coefficient, 𝐶 :𝛼𝑇 is the thermoelastic
coefficient tensor, 𝑀 is the Biot modulus, 𝛼𝑚 is the thermal expansion coefficient, 𝐶𝑝𝛼 is the thermal capacity
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of phase 𝛼, 𝐾𝑓 is the fluid bulk modulus, 𝜀 = 1/2
(︁

grad 𝜉 + grad 𝜉𝑇
)︁
is the small-deformation tensor, 𝜉 is the

skeleton displacement vector, 𝑓0 is a certain reference state of the parameter 𝑓 , and ∆𝑓 = 𝑓 − 𝑓0.
The system of constitutive relations (2) describes the dependence of the corresponding values on the state

of the medium 𝜒. For example, the first expression describes the change in combined stress upon deformation
of the skeleton (first summation term), the change in pore pressure (second term), temperature (third term),
and medium damage (fourth term). The expression for the internal energy of the skeleton is

∆𝐸𝑠 = ∆𝐸𝑠𝜀 + ∆𝐸𝑠𝑝 + ∆𝐸𝑠𝑇 + ∆𝐸𝑠𝐷,

where

∆𝐸𝑠𝜀 =

[︂
𝜎0 +

1

2
𝐶 : ∆𝜀 + 𝑝0𝑏 + 𝑇 0𝐶 :𝛼𝑇

]︂
∆𝜀,

∆𝐸𝑠𝑝 =

[︂
1

𝑁

(︂
𝑝− 1

2
∆𝑝

)︂
− 𝛼𝜙

(︂
𝑇 − 1

2
∆𝑇

)︂]︂
∆𝑝,

∆𝐸𝑠𝑇 =

[︂
−𝛼𝜙

(︂
𝑝− 1

2
∆𝑝

)︂
+

𝐶𝑝𝑠

𝑇 0

(︂
𝑇 − 1

2
∆𝑇

)︂]︂
∆𝑇,

∆𝐸𝑠𝐷 = −
[︂
𝑌 0 + 𝐶

(︂
𝜀0 +

1

2
∆𝜀

)︂
∆𝜀

]︂
∆𝐷.

(3)

The expression for the internal energy of the fluid is

∆𝐸𝑓 =

[︂
𝜑

𝐾𝑓

(︂
𝑝− 1

2
∆𝑝

)︂
− 𝜑𝛼𝑓

(︂
𝑇 − 1

2
∆𝑇

)︂]︂
∆𝑝−

[︂
𝜑𝛼𝑓

(︂
𝑝− 1

2
∆𝑝

)︂
− 𝐶𝑝𝑓

𝑇 0

(︂
𝑇 − 1

2
∆𝑇

)︂]︂
∆𝑇.

3. Computational algorithm. The system of equations (1) represents a bound problem for an elliptic
equation (law of momentum conservation) and two parabolic equations (mass and energy conservation laws). In
practice, various methods are used to solve this class of problems, such as finite volume method, finite element
method and boundary integral equation method. In this case, the equations themselves can be solved both
jointly and iteratively. In the latter case, convergence of the iteration process depends directly on the choice of
the equation binding algorithm [10].

In this paper, the finite element method is used to solve the system of equations (1), and the equations
are solved jointly. The key unknowns are displacement 𝜉, pore pressure 𝑝, and temperature 𝑇 . Tetrahedral
Taylor-Hood elements [11] were chosen as finite element type, which have the second order of approximation
by displacement and the first order by pressure and temperature. This type of finite elements ensures stabil-
ity of the solution to poroelasticity problems at the expense of satisfying the Ladyzhenskaya–Babuška–Brezzi
condition [12].

Let’s consider the weak formulation of the problem. Suppose an area 𝑉𝛼 of sufficiently smooth (vector)
functions is defined within region Ω, where 𝜉 ∈ 𝑉𝜉, 𝑝 ∈ 𝑉𝑝, 𝑇 ∈ 𝑉𝑇 , and the Dirichlet conditions (𝜕Ω𝐷) or
Neumann conditions (𝜕Ω𝑁 ) are defined for each parameter at the boundary 𝜕Ω of the area. Let us introduce
a set of test functions 𝑣𝛼 (𝛼 = {𝜉, 𝑝, 𝑇}) within the area 𝑉 0

𝛼 ⊂ 𝑉 , where 𝑉 0
𝛼 = {𝑣𝛼 ∈ 𝑉𝛼 : 𝑣𝛼|𝜕Ω𝐷

= 0}. By
multiplying each equation in the system (1) by its test function on the left, we arrive to

∫︁
Ω

𝑣𝑇
𝜉 div𝜎𝑑Ω = 0,

∫︁
Ω

𝑣𝑝

[︂
𝜕𝑚𝑓

𝜕𝑡
+ div(𝜌𝑓𝑤)

]︂
𝑑Ω = 0,

∫︁
Ω

𝑣𝑇

[︂
𝜕𝐸𝑠

𝜕𝑡
+

𝜕𝐸𝑓

𝜕𝑡
+ div

(︂
1

𝜑
𝐸𝑓𝑤

)︂
+ div (𝑝𝑤) + div(𝑞𝑇 )

]︂
𝑑Ω = 0.

(4)
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Applying the Green formula to the system of equations (4), we get the weak formulation of the equations:∫︁
Ω

(𝐿𝑣𝜉)
𝑇
𝜎𝑑Ω −

∫︁
𝜕Ω𝑁

𝑣𝑇
𝜉 �̃�𝑑𝑆 = 0,

∫︁
Ω

𝑣𝑝
𝜕𝑚𝑓

𝜕𝑡
𝑑Ω −

∫︁
Ω

(grad 𝑣𝑝)
𝑇
𝑤𝑑Ω +

∫︁
𝜕Ω𝑁

𝑣𝑝𝑞𝑑𝑆 = 0,

∫︁
Ω

𝑣𝑇

[︂
𝜕𝐸𝑠

𝜕𝑡
+

𝜕𝐸𝑓

𝜕𝑡

]︂
𝑑Ω −

∫︁
Ω

(grad 𝑣𝑇 )
𝑇 1

𝜑
𝐸𝑓𝑤𝑑Ω −

∫︁
Ω

(grad 𝑣𝑇 )
𝑇
𝑝𝑤𝑑Ω −

∫︁
Ω

(grad 𝑣𝑇 )
𝑇
𝑞𝑑Ω+

+

∫︁
𝜕Ω𝑁

𝑣𝑇
1

𝜑
𝐸𝑓𝑞𝑑𝑆 +

∫︁
𝜕Ω𝑁

𝑣𝑇 𝑝𝑞𝑑𝑆 +

∫︁
𝜕Ω𝑁

𝑣𝑇 𝑞𝑇 𝑑𝑆 = 0,

(5)

where �̃�, 𝑞, 𝑞𝑇 are the given stress vector, fluid flow and heat flow across the boundary 𝜕Ω𝑁 , 𝐿 is the differential
operator of the form

𝐿 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜕

𝜕𝑥
0 0 0

𝜕

𝜕𝑧

𝜕

𝜕𝑦

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥

0 0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

⎤⎥⎥⎥⎥⎥⎥⎦

𝑇

,

and strain and stress tensors are represented in Voigt vector notation:

𝜀 =
[︀
𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑦𝑧, 𝛾𝑥𝑧, 𝛾𝑥𝑦

]︀𝑇
, 𝛾𝑖𝑗 = 2𝜀𝑖𝑗 , 𝜎 =

[︀
𝜎𝑥, 𝜎𝑦, 𝜎𝑧, 𝜎𝑦𝑧, 𝜎𝑥𝑧, 𝜎𝑥𝑦

]︀𝑇
.

Suppose the initial stress tensor 𝜎0 is constant for the entire volume and the initial strain 𝜀0 equals zero. Then,
after substituting all constitutive relations and differentiating the first equation we arrive from (5) to∫︁

Ω

(𝐿𝑣𝜉)𝑇 : 𝐶(1 −𝐷) :
𝜕𝜀(𝜉)

𝜕𝑡
𝑑Ω−

∫︁
Ω

(𝐿𝑣𝜉)
𝑇
𝑏
𝜕𝑝

𝜕𝑡
𝑑Ω −

∫︁
Ω

(𝐿𝑣𝜉)
𝑇

: 𝐶 : 𝛼𝑇
𝜕𝑇

𝜕𝑡
𝑑Ω =

∫︁
𝜕Ω𝑁

𝑣𝑇
𝜉

𝜕�̃�

𝜕𝑡
𝑑𝑆,

∫︁
Ω

𝑣𝑝𝑏 : 𝐿
𝜕𝜉

𝜕𝑡
𝑑Ω +

∫︁
Ω

𝑣𝑝
1

𝑀

𝜕𝑝

𝜕𝑡
𝑑Ω −

∫︁
Ω

𝑣𝑝𝛼𝑚
𝜕𝑇

𝜕𝑡
𝑑Ω +

∫︁
Ω

(grad 𝑣𝑝)
𝑇 𝑘

𝜇
grad(𝑝)𝑑Ω = −

∫︁
𝜕Ω𝑁

𝑣𝑝𝑞𝑑Ω,

∫︁
Ω

𝑣𝑇
[︀
𝜎0 + 𝐶(1 −𝐷) : 𝜀 + 𝑝0𝑏 + 𝑇 0𝐶 :𝛼𝑇

]︀ 𝜕𝜀
𝜕𝑡

𝑑Ω +

∫︁
Ω

𝑣𝑇

[︂
1

𝑀
𝑝𝑑Ω − 𝛼𝑚𝑇

]︂
𝜕𝑝

𝜕𝑡
𝑑Ω+

+

∫︁
Ω

𝑣𝑇

[︂
−𝛼𝑚𝑝 +

𝐶𝑝𝑠 + 𝐶𝑝𝑓

𝑇 0
𝑇

]︂
𝜕𝑇

𝜕𝑡
𝑑Ω −

∫︁
Ω

𝑣𝑇

[︂
1

2

𝑑𝐷

𝑑𝑡
𝐶 : 𝜀

]︂
𝜀𝑑Ω+

+

∫︁
Ω

(grad 𝑣𝑇 )
𝑇

{︂
1

𝜑
𝐸0

𝑓 +

[︂
1

𝐾𝑓
𝑝− 𝛼𝑓𝑇

]︂
∆𝑝−

[︂
𝛼𝑓𝑝−

𝐶𝑝𝑓

𝜑

]︂
∆𝑇

}︂
𝑘

𝜇
grad𝜑𝑝𝑑Ω+

+

∫︁
Ω

(grad 𝑣𝑇 )
𝑇
𝑝
𝑘

𝜇
grad 𝑝𝑑Ω −

∫︁
Ω

(grad 𝑣𝑇 )
𝑇
𝑞𝑇 𝑑Ω = −

∫︁
𝜕Ω𝑁

𝑣𝑇 𝜌𝑓𝑒𝑓𝑞𝑑𝑆 −
∫︁

𝜕Ω𝑁

𝑣𝑇 𝑝𝑞𝑑𝑆 −
∫︁

𝜕Ω𝑁

𝑣𝑇 𝑞𝑇 𝑑𝑆.

(6)

Let’s consider spatial approximation of the system of equations (6). For this purpose, we introduce a set
of shape functions 𝜑(𝛼)

𝑖 , so that given an arbitrary function 𝑓 , we get

𝑓 =

𝑁𝛼∑︁
𝑖=1

𝜑
(𝛼)
𝑖 𝑓𝑖, 𝑓 = 𝜉, 𝑝, 𝑇.

Then, taking into account the type of constitutive relations (2), the system of equations (5) can be written
in the matrix form⎡⎣−𝐴𝜉𝜉 𝐴𝜉𝑝 −𝐴𝜉𝑇

𝐴𝑇
𝜉𝑝 𝐴𝑝𝑝 𝐴𝑝𝑇

𝐴𝑇𝜉 𝐴𝑇𝑝 𝐴𝑇𝑇

⎤⎦⎡⎣𝜕𝜉/𝜕𝑡𝜕𝑝/𝜕𝑡

𝜕𝑇/𝜕𝑡

⎤⎦ +

⎡⎣ 0 0 0

0 𝐵𝑝𝑝 0

𝐵𝑇𝜉 𝐵𝑇𝑝 𝐵𝑇𝑇

⎤⎦⎡⎣𝜉

𝑝

𝑇

⎤⎦ =

⎡⎣−𝜕𝑓 𝜉/𝜕𝑡

𝑓𝑝

𝑓𝑇

⎤⎦ , (7)
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where

𝐴𝜉𝜉 =

∫︁
Ω

(︀
𝐿𝜑𝜉

)︀𝑇
𝐶(1 −𝐷)

(︀
𝐿𝜑𝜉

)︀
𝑑Ω, 𝐴𝜉𝑝 = 𝐴𝑇

𝑝𝜉 =

∫︁
Ω

(︀
𝐿𝜑𝜉

)︀𝑇
𝑏𝜑𝑝𝑑Ω,

𝐴𝜉𝑇 = −
∫︁
Ω

(︀
𝐿𝜑𝜉

)︀𝑇
𝐶(1 −𝐷) : 𝛼𝑇𝜑𝑇 𝑑Ω, 𝐵𝑝𝑝 =

∫︁
Ω

(grad𝜑𝑝)𝑇
𝑘

𝜇
(grad𝜑𝑝)𝑑Ω,

𝐴𝑝𝑝 =

∫︁
Ω

𝜑𝑝
𝑇 1

𝑀
𝜑𝑝𝑑Ω, 𝐴𝑝𝑇 = −

∫︁
Ω

𝜑𝑇
𝑝 𝛼𝑚𝜑𝑇 𝑑Ω,

(8)

𝐴𝑇𝜉 =

∫︁
Ω

𝜑𝑇
𝑇

(︀
𝜎0 + 𝐶(1 −𝐷) : 𝜀 + 𝑝0𝑏 + 𝑇 0𝐶 :𝛼𝑇

)︀ (︀
𝐿𝜑𝜉

)︀
𝑑Ω,

𝐴𝑇𝑝 =

∫︁
Ω

𝜑𝑇
𝑇

(︂
1

𝑀
𝑝− 𝛼𝑚𝑇

)︂
𝜑𝑝𝑑Ω, 𝐴𝑇𝑇 =

∫︁
Ω

𝜑𝑇
𝑇

[︃
−𝛼𝑚𝑝 + (𝐶𝑝𝑠 + 𝐶𝑝𝑓 )

𝑇

𝑇 0

]︃
𝜑𝑇 𝑑Ω,

𝐵𝑇𝑝 =

∫︁
Ω

grad𝜑𝑇
𝑇

{︂
1

𝜑
𝐸0

𝑓 +

[︂
1

𝐾𝑓
𝑝− 𝛼𝑓𝑇

]︂
∆𝑝−

[︂
𝛼𝑓𝑝−

𝐶𝑝𝑓

𝜑

]︂
∆𝑇

}︂
𝑘

𝜇
grad𝜑𝑝𝑑Ω,

𝐵𝑇𝜉 =

∫︁
Ω

grad𝜑𝑇
𝑇

[︂
1

2

𝑑𝐷

𝑑𝑡
𝐶 : 𝜀

]︂ (︀
𝐿𝜑𝜉

)︀
𝑑Ω, 𝐵𝑇𝑇 =

∫︁
Ω

grad𝜑𝑇
𝑇𝜅 grad𝜑𝑇 𝑑Ω,

𝑓 𝜉 =

∫︁
𝜕Ω𝑁

𝜑𝑇
𝜉 �̃�𝑑𝑆, 𝑓𝑝 = −

∫︁
𝜕Ω𝑁

𝜑𝑇
𝑝 𝑞𝑑Ω, 𝑓𝑇 = −

∫︁
𝜕Ω𝑁

𝜑𝑇
𝑇 𝜌𝑓𝑒𝑓𝑞𝑑𝑆 −

∫︁
𝜕Ω𝑁

𝜑𝑇
𝑇 𝑝𝑞𝑑𝑆 −

∫︁
𝜕Ω𝑁

𝜑𝑇
𝑇 𝑞𝑇 𝑑𝑆.

To approximate the system of equations in time, a fully implicit scheme was used for displacement 𝜉,
pressure 𝑝 and temperature 𝑇 . Some parameters such as damage 𝐷, permeability 𝑘, fluid viscosity 𝜇𝑓 are
functions of the current state of the system, so they were calculated using parameters from the explicit layer.
Newton’s method was used to solve a nonlinear system of equations. At each Newtonian iteration, the system of
linear equations was solved using BiConjugate Gradient Stabilized (BiCGStab) [13]. Incomplete LU factorization
with single-level filling (ILU(1)) was used as a preconditioner. A number of approaches were used to ensure
stability of the finite problem, such as the diagonalization of mass matrices [14] and rearrangement of rows and
columns according to the Cuthill–McKee algorithm [15].

4. The software package. As a rule, if computations need to take into account deformation, flow, non-
isothermal effects and damage simultaneously, several software modules are used and connected iteratively.
For example, a flow simulator is launched at every step in the computation, and the resulting pore pressure
distribution data is sent to the geomechanical simulator.

The computational algorithm described in this work allows considering different effects simultaneously.
For practical computations, this algorithm is implemented as a software module written in C++. The main
components of the module are preprocessor, computational kernel and postprocessor, which are described in
detail below.

The software module starts operation by launching the preprocessor unit, which is responsible for reading
and preparing input data for the model. The input data is presented in a series of text files, each describing
a specific data block in a fixed format. As the first step, the module reads the computational grid. Since the
algorithm in use can be applied to computing complex three-dimensional problems, tetrahedrons are used as
elements of the computational grid. As was mentioned earlier, the elements have a second-order approximation
for displacement and first-order approximation for pressure and temperature. This means that in addition to
the 4 main nodes, intermediate nodes need to be defined on the edges of each tetrahedron. For simplicity, these
intermediate nodes are set in the centers of the edges. Therefore, each element of the grid has a total of 10
nodes. Their local enumeration is provided in Figure 1.

To define a computational grid uniquely, it is necessary to set the coordinates of all its nodes and enumerate
all the tetrahedrons with an index of the nodes they are composed of in a global enumeration. To construct
a simple computational grid in this format, we wrote a MATLAB script that uses the built-in function to
triangulate a given set of points using the Delaunay algorithm. This computational grid generator receives
input data on the shape and size of the computational region, as well as the computational grid step (which
can be variable); at the output, it generates a set of text files containing information on the coordinates of the
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Figure 1. The numbering of tetrahedral element nodes Figure 2. Sample Computational Grid

computational nodes and the list of the nodes making up each cell in the computational grid. An example of
the computational grid is shown in Figure 2. Note that the program can work with any other grid generators
that accept the data described above as inputs.

A complete description of the computational model, in addition to the grid, must include information
on the values of the model parameters in each cell and the complete set of initial and boundary conditions.
The model parameters are defined as a data set in the “keyword” — “parameter value” format. The list of key
parameters includes geomechanical properties of the rock (Young’s Modulus, Poisson’s ratio), Biot coefficient,
compressibility parameters (Biot modulus for the skeleton and fluid bulk modulus), skeleton and fluid density,
reservoir porosity and permeability properties, thermophysical properties (heat capacity, thermal compression
ratios), as well as initial pressure conditions. A single value can be assigned to the entire model, or data can be
entered for each specific node element.

The software module allows setting boundary values of the first, as well as second kind. Boundary
conditions of the first kind are set for individual nodes located at the corresponding boundary in the following
format: number of the corresponding variable (displacement vector component, pressure or temperature) within
the unknowns vector, and its value. The boundary condition of the second kind is set for the corresponding
triangular faces. For each face, the numbers of the nodes shaping that face is specified, as well as the value of
the stress vector acting on the face and the values of the mass and heat flow through the face.

After a complete description of all input data for the model, they are sent to the computational kernel,
which calculates the solution to the system of equations (7) at each specific moment in time. As mentioned
earlier, the system of nonlinear equations is solved using Newton’s method. At each Newtonian iteration, the
Jacobi matrix is assembled and the right hand side is calculated. The Jacobi Matrix is filled in blocks, by
calculating volume integrals (8) for each element of the computational grid. The integrals containing shape
functions for displacement are calculated using Gaussian quadrature rules of the second order for tetrahedral
elements. In other integrals, the shape functions are of the first order only, so the integral can be calculated
analytically. Eigen library [16] is used for storing and performing operations on matrices. Since Jacobian is a
sparse matrix, the non-zero values of matrix elements are stored in an array of triplets during its assembly, with
each triplet containing information about the element value and its position in the matrix.

After assembling the Jacobian and calculating the right hand side, boundary conditions are applied. For
each variable for which the boundary condition of the first kind is defined, the corresponding row in the Jacobian
and the right part is zeroed out, and the matrix diagonal is set to 1. This means that this component of the
vector of unknowns does not increase, i.e. its value at any given moment in time equals the initial value (which
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is set in the initial terms of the problem). Surface integrals 𝑓𝜉, 𝑓𝑝, 𝑓𝑇 (8) are calculated for the boundary
conditions of the second kind and added to the right hand side.

The condition for convergence of the iterative algorithm is meeting the following conditions simultaneously:

||∆𝑥||∞ < 𝜀𝑥, ||𝑅||∞ < 𝜀𝑅,

where ∆𝑥 is the incremental size of the unknowns at the current iteration, 𝑅 is the value of non-linear divergence,
𝜀𝑥,𝑅 are the accuracy parameters. If a certain time interval requires more than 5 iterations, the interval is
reduced by half, and the iteration algorithm is restarted from the beginning. In case of successful convergence,
the algorithm proceeds with the next time interval, gradually increasing the time intervals.

Figure 3. Software module operation flowchart

At each Newtonian iteration, a system of linear equations
is solved. After preliminary preparation of the system matrix,
as described in the previous section, a linear solver is launched.
The BiConjugate Gradient Stabilized (BiCGStab) method is
used as a solver. It is implemented in the HYPRE (Parallel
High Performance Preconditioners) library [17] together with
ILU(1) preconditioner from the same library. The relative tol-
erance of the linear solver is set to𝜀lin.

After calculating the time interval, the program recalcu-
lates some parameters of the model which explicitly depend on
the current state of the medium. The damage parameter is
calculated first. The damage parameter is set for the entire ele-
ment and depends on the condition of the medium. To calculate
the damage parameter, all the relevant data is interpolated to
the center of the element, after which the value calculated by a
formula is assigned to the entire element. Since in many mod-
els the damage parameter depends on the primary values of the
stress or strain tensor, eigenvalues of the respective matrix are
used to calculate the primary values using the Eigen library
functions.

In addition to damage, the software module developed
recalculates permeability of the medium and physical properties
of the fluid (such as viscosity). These values are also calculated
explicitly at the end of the iteration, by using formulas that will
be presented in the next section.

After all computations related to the current time inter-
val are completed, the data is sent to the postprocessor. The
postprocessor exports the main results (pressure, temperature,
strain, stress, damage parameter, permeability, energy compo-
nents, etc.) at each moment in time for visualization and anal-
ysis. Paraview software [18] is used for visualization, which
receives a .vtu input file with unstructured grid data and the property distribution on the grid. The VTK
(Visualization Toolkit) library [19] is used to generate this file. The final flowchart of the entire process is
provided in Figure 3.

5. Computation results. In this section we provide an example of the software module work, using the
sample problem of thermal impact on a reservoir saturated with fluid. The following effects were taken into
account in addition to the standard ones when solving the problem: medium damage, changes in reservoir
permeability upon deformation, changes in fluid viscosity depending on pressure and temperature.

The explicit dependence of the damage rate on the rock deformation [20] is used as the formula linking
damage to the medium parameters:

𝐷 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if 𝜀 < 𝜀𝑐,
𝐷off

𝜀off − 𝜀𝑐
𝜀−𝐷off

𝜀𝑐

𝜀off − 𝜀𝑐
, if 𝜀𝑐 ≤ 𝜀 ≤ 𝜀off,

𝐷lim − (𝐷lim −𝐷off)
𝜀off

𝜀
if 𝜀 > 𝜀off,

(9)
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here 𝜀 is calculated using the formula:

𝜀 =

⎯⎸⎸⎷ 3∑︁
𝑖=1

⟨𝜀𝑖⟩2, ⟨𝜀𝑖⟩ =
𝜀𝑖 + |𝜀𝑖|

2
.

where 𝜀𝑖 are the principal strains.
The dependence [21]

𝑘 = 𝑘0 exp [−𝛽 (�̃� − 𝛼𝑝)] , (10)

where 𝑘0 is the initial permeability value, and �̃� = 1/3(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧) is the average stress, is used to simulate
the dependence of permeability on the medium state parameters.

The Beggs and Robinson correlation [22], widely utilized in oil engineering, is used to describe the changes
in fluid viscosity depending on reservoir conditions:

𝜇 = 10𝑋 − 1, 𝑋 = 10𝑍𝑇−1.163, 𝑍 = 3.0324 − 0.02023𝛾0, (11)

where 𝛾0 is the specific fluid density measured in 0𝐴𝑃𝐼 (a dimensionless unit of measurement describing the
ratio of fluid density to water density). Formula

𝛾0 =
141.5

𝜌𝑜/1000 + 131.5
,

where 𝜌𝑜 is the fluid density in kg/m3, is used to convert fluid density from the SI international system to 0𝐴𝑃𝐼.

Table 1
Input parameter values for the model

Parameter Value
Young’s Modulus, 𝐸 20 GPa
Poisson’s Ratio, 𝜈 0.3
Biot Modulus, 𝑁 10 GPa
Fluid bulk modulus, 𝐾𝑓 3.3 GPa
Biot coefficient, 𝑏 0.79
Permeability, 𝑘 1 · 10−16 m2

Porosity, 𝜙 0.1
Viscosity, 𝜇 1 mPa · s
Skeleton density, 𝜌𝑠 2100 kg/m3

Fluid density, 𝜌𝑠 1000 kg/m3

Skeleton thermal volume
expansion coefficient, 𝛼𝑠

1 · 10−6 1/K

Fluid thermal volume
expansion coefficient, 𝛼𝑓

1 · 10−4 1/K

Skeleton specific heat
capacity, 𝑐𝑝𝑠

1000 J/(kg · K)

Fluid specific heat
capacity, 𝑐𝑝𝑓

4200 J/(kg · K)

Effective thermal
conductivity, 𝜅

2 W/(m · K)

As a specific example of the software application,
let’s consider the problem of damage zone development
near the injection well upon injection of the thermal fluid
under pressure exceeding that in the reservoir. This prob-
lem is somewhat similar to the problem of spontaneous
fracture development during hydrofracturing. Of course,
the formulation being considered does not describe the
development of a fracture as a standalone object: it re-
quires the use of other models that are qualitatively dif-
ferent from the one under consideration. However, qual-
itative behavior of the damage area can be reasonably
expected to have a number of features typical for “real”
hydraulic fractures. In particular, the damage area has
a peculiar (flattened) shape and orientation with respect
to the principal stress directions. It should be noted also
that the purpose of the computations presented below
is not to model the dynamics of the damage area in a
meaningful applied context. The computations presented
below demonstrate the main possibilities of the mathe-
matical model, algorithms and software implementation
used.

The model under consideration has 50 × 50 × 5 m
dimensions and consists of five layers. An injection well
is located at the center of the model, injecting fluid at
a constant pressure of 800 bar and temperature of 4000.
The initial reservoir pressure is 200 bar, temperature is
1000, full (compressive) stresses in directions 𝑥, 𝑦 and 𝑧,
respectively, are 300, 550 and 700 bar. The reservoir and
fluid parameters are presented in the table 1.
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Figure 4. Distribution of damage parameter 𝐷 (row 1), pressure 𝑝 (row 2), temperature
𝑇 (row 3), permeability 𝑘 (row 4) after 1 day (left), 2 days (center) and 5 days (right)
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Figure 5. Distribution of the Lateral Components of Stress Tensor 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑥𝑦 after
1 day (left), 2 days (center) and 5 days (right)

Figure 6. The area of the greatest damage
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To ensure a more accurate assessment of the damage front advance associated with the growth of cracks
in the reservoir, additional terms need to be introduced to the equation describing the damage parameter (9).
According to [23], this condition includes a requirement that damage parameter must change if the maximum
principal components of the effective stress tensor exceeds a certain threshold value:

𝜎eff = 𝐶 : 𝜀 > 𝜎max.

The value of 𝜎max in our calculations was assumed to be 100 bar.
The fluid injection time in our simulation was 5 days. The damage parameter, pressure and temperature

distribution at different points in time is shown in Figure 4. The lateral components of the stress tensor are
presented in Figure 5.

In the center of the model, an elliptical area can be distinguished (Figure 6), corresponding to the diffuse
damage of the medium around the well. The area grows in size to 30 × 20 m after 5 days. The average value
of the damage parameter in this area is 0.2, and the permeability has increased about 12 times in this area. A
sharp transition from the damage area to intact area is associated with the introduction of the criteria for the
threshold value of the effective stress tensor as presented above.

For this calculation, we assessed the contribution of various effects into the stress-strain state of the
reservoir. Expression (2) for the total stress tensor can be expressed as

∆𝜎 = 𝜎𝜀 − 𝜎𝑝 − 𝜎𝑇 − 𝜎𝐷,

where 𝜎𝜀 = 𝐶 : ∆𝜀 is the strain component, 𝜎𝑝 = 𝑏∆𝑝 is the filtration component, 𝜎𝑇 = 𝐶 :𝛼𝑇 ∆𝑇 is the
thermal component, 𝜎𝐷 = 𝐷 ·𝐶 : ∆𝜀 is the damage-related component.

Figure 7 shows the distribution of each component’s share after 30 days, where each component of the full
stress tensor was normalized to the value

Σ = |𝜎𝜀| + |𝜎𝑝| + |𝜎𝑇 | + |𝜎𝐷|.

It follows from Figure 7 that deformation and filtration processes are the main contributors to the stress-
strain state. The contribution of fracturing in the affected area is about 15%, and thermal effects account for
less than 10%.

Figure 7. Contribution of various parameters to the change in average stress
(in fractions) over the period of 30 days
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Computation statistics. The computations were performed on a desktop computer with an Intel Core
i7 processor with 8 logical cores. Computation of the linear system of equations was paralleled (via HYPRE
library functions) using OMP (Open Multi-Processing) technology. The full computation time was 37 minutes,
the number of nodes in the model was 112,211, the average amount of RAM used is 3 GB. The average number
of linear iterations is 30, the number of Newtonian iterations is between 3 and 6.

6. Conclusion. This article provides a description of a software package for simulating thermo-poroelastic
medium evolution taking into account its damage, the mathematical model used and computational algorithm
are considered. The mathematical model is a system of equations including the mass, momentum and energy
conservation laws, complemented with thermodynamically consisted constitutive relations. The computational
algorithm is based on the finite element method. The system of equations is solved jointly without iterative
binding. The work of the software package is demonstrated using the example problem of fracture development
when injecting hot fluid into the reservoir. The degree of reservoir fracturing is analyzed in this context, along
with the contribution of various effects to the change in the stress-strain conditions.
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