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UDC 518.1

THE APPLICATION OF THE BOUNDARY INTEGRAL EQUATION METHOD TO
NUMERICAL SOLUTION OF DIRICHLET’S PROBLEM IN DOMAINS WITH CORNER
POINTS

I. O. Arushanian’

Dirichlet’s problem in a domain with corner points is reduced to a boundary integral equation. In order to
solve this problem numerically, we propose a method with exponential rate of convergence. An approach
for computing the normal derivative of the solution to the problem is discussed. Some estimates for the
number of arithmetic operations needed are given.

1. Problem statement. Let Q be a bounded domain in R? such that its boundary I'is a closed nonoverlapping
curve which admits the following parametric representations:

= {x =uz(s) = (xl(s),xz(s)), s€]0,T], «(0)= x(T)}

Here s is the natural parameter (the arc length).
We shall assume in what follows that

where T'; is the rectilinear segment that connects the corner points P; and Pj4q (it is also assumed that Py = P).
Denote by «; the interior angle of the domain Q2 at P; and suppose 0 < o; < 27 for all j.
Let us consider the following boundary value problem:

AU(z) = x €

0,
Ulz)=F(z), z€Tl (1)

Here the continuous function F' is infinitely differentiable everywhere on I" with the exception of corner points where
the singularities (z — P;)®, 0 < © < 1, are allowed.
We shall search for a solution to problem (1) in the form of the double layer potential

1 0

Ux) = ﬁ/q)(y) P In|z — y|dl,
y

r

with the unknown distribution density ® that satisfies the following boundary integral equation [2]:

) 6 J—1
o)+ 1 [ @) glnfe—gldly =26), cer\ |1
Yy

T 7=0

Taking into account the above parametrization of the curve I', denote

In this notation, the boundary integral equation takes the form

gp(s)-I-/K(s,t)go(t)dt:f(s), se[0,T], z(s)#P; ¥j=0,...,J-1 (2)
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where 12 () (za(s) — z2(t)) — 5 (t) (z1(s) — z1(t)) s
K= @) = a0) + (ma(s) — ()
100 — 020 .
2 (1) + (5(0)” |
Further, we relate a set of numbers {s;}, j = 0,...,J, to the corner points P; so that

l‘(Sj):Pj j:O,...,J
O=so<s1 <...<sj_1<sy5="T

In order to solve equation (2) numerically, we shall use the quadrature method according to which the integral
in the left-hand side of (2) is replaced by a quadrature sum. As a result, a system of linear algebraic equations is
obtained. However, this approach being applied to equation (2) leads to some difficulties associated with the fact that
the kernel discontinues at the corner points. To avoid these difficulties, we rewrite equation (2) in the equivalent form

2¢(s) + / K(s,t)(go(t) — go(s)) dt = f(s), s€]0,T] (3)

The main advantage of this representation consists in an increase of smoothness of the integrand for ¢ = s.
2. Numerical solution of the integral equation. A composite quadrature formula was constructed in [1] to
approximate the integral equation (3) on the solution with exponential accuracy with respect to the number of nodes.
The segment [0, 7] is subdivided into a finite number of subsegments that decrease in length when approaching
the corner points. The endpoints of these subsegments in a neighborhood of each corner point s; are specified by the
formula s; +0.5 (5541 — s5) ~®§ (or s;, —0.5(s; —s;-1) ~®§), where 0 < ©; < 1,k=0,1,2,..., N. Here N is a natural
number that characterize the condensation of this grid. On each of the subsegments, we use a Gaussian quadrature

of the same order of accuracy with n; 5 nodes such that

S /\j(N—k’)hl(l—l—@j)—l—th
n.
2 |7 e 16,

+1 (4)

Here 0 < A; < 11is a number that depends on f and on the geometry of the domain and characterizes the singularity
of the solution to equation (3) at a corner point:

|g0(5) — gp(sj)| < const |x(5) — x(sj)|>\j
Denoting
J-1 N
n=2 Z Z njk
j=0k=1

we obtain the quadrature formula
Suls,) = 30 AVK (5,407) (2(17) = o(5)) (5)

The following theorem is valid [1].
Theorem 1. Let ¢ be a solution to equation (3). Then, for any natural number n a quadrature formula S, ()
can be constructed such that

Sef0,T

mas | [ K(su1)(p(0) = () dt = S, ()| < b exp(-cv)

where the constants are strictly positive and do not depend on a choice of n.
As a result, we obtain the system of linear algebraic equations

2o+ AP (7)o ) = (1) = ®
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that approximates equation (3) on the solution.
Let us consider the equation

on + Knpn = f (7)

where K, is a linear bounded operator in the space of continuous 7-periodic functions such that

(Knpv)(s) = v(s) + Sn(s,v)

for an arbitrary function v from this space.
The procedure of solving equation (7) is reduced to solving system (6), since <I>Z(n) = ¢n (t(n)). On the other
hand, the function

on(s) = (f(s) - iAﬁU{ (s,tg.”)) <I>§.”>) (2 - Zi:A;")K (s,tg.”))) 8)

is a solution to equation (7). Tt can be proved that, for sufficiently large values of n, representation (8) is realizable
for all s € [0,7].
Thus, system (6) is solvable if there exists a sequence of operators {(I + Kn)_l} bounded uniformly in n.
The main result obtained in [1] is formulated as follows:
Theorem 2. There is an integer ny > 0 such that for any integer n > ny the operator (I + K,)™! erists and the
mequality
||(I + K”)_lnc < consty

holds. The equation

has a unique solution @, for which the estimate

e — ¢nllo < consts - exp ( — c\/ﬁ)

is valid, where ¢ is a solution to boundary integral equation (3) and the constants are strictly positive and do not
depend on a choice of n.
3. Numerical solution of Dirichlet’s problem. Let us study the question of numerical solution of the original
boundary value problem (1) on the basis of the above approximate solution to boundary integral equation (3).
Taking into account the above parametrization of the curve T', the solution to problem (1) can be written down
at an arbitrary interior point (x1, #2) of the domain £ as

l\DI»—k

/A z1,0,1) p(t) dt (9)

where
1@ (t) (w2 — wa(t)) — 2h(t) (w1 — 21 (1))
T (21— 21(1)” + (22 — 22(1))”

It is reasonable to use the quadrature formula (5) for the approximate evaluation of integral (9). Since

T T
/A x1,Ta,1 /A 1,22, ) pa(t)dt + O (e_c\/ﬁ)
0 0

[((l‘l, l‘z,t) =

we adopt the function

S

—

5]

~—

I

N | —
7=

AP K (xl, xz,t§”>) ("

as an approximate solution to problem (1).
Let us estimate an error of this representation of the solution.
Theorem 3. There exists a number Q > 1 such that for each x € 0 the inequality

U (@) = Un(@)] < e(@) - (Q(a)) ™"
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holds, where 0 < c(x) < eafr(x), 1 < Qx) < 14car(x) < Q, and r(x) is the distance from the point x to the curve T
Here the constants ¢y and co are strictly positive and do not depend on a choice of n.
Proof. Tt is necessary to estimate the error R(z) of the quadrature

J

Tt~

Ky, 0,0 pn() dt = 37 AV (1,200,107 ) @07 4 R(2)
i=1

for each x € 2. We shall follow the technique proposed in [1] for proving Theorem 1.
For each j we first estimate the errors R;(x):

Sj41/2
Ko eaydi= S AVK (2ra0.007) @) 4 Ry(2)

55 t$ €ls 5,5 j41/2]

Here
siy1/2 =55 + 0.5 (5541 — s5)

Without loss of generality, we assume that
x(s5) = (0,0), x(5j+1/2) =(1,0)
The segment [s;, 5;41/2] is subdivided into elementary subsegments by the following N + 1 points:
S5 <ty < ... <1 <t0:8j+1/2

Here tj, =s; +(14+0;)7%, k=0,...,N,0< 0; < 1,and N = O(/n).

It follows from [1] that for each k = 1, ..., N the above-constructed function ¢, (¢) admits an analytic continuation
from the segment [tg,15_1] into the circle on the complex plane with its center at the point (0.5 (th—1+1k), 0) and its
radius

re=05(1-(140;)7")(1+06;)*

Note that this continuation is bounded by a constant independent of k.

The Gaussian quadrature with n; ; nodes specified by (4) is constructed on each elementary segment [ty t5_1].
Let us assume that the integrand admits an analytic continuation from the segment [t,tx—1] of the real axis into
the ellipse on the complex plane with its focuses at the points (¢5,0) and (¢x—1,0) such that it passes through
the point (0.5 (th—1+ k) — i, 0). Let us further assume that this continuation i1s bounded within this ellipse by

O ((1 + Gj)k(l_Aj)). Then, the error of the elementary quadrature is estimated from above as follows:
Ry, = const - (1 + Gj)—“jQ;z”i)k
Here @ 1s the sum of semiaxes of the second ellipse constructed from the first one by the mapping

2z — (tk—l —|—tk)
% -
tp—1 —tk

Suppose the point # is at a distance of at least 2(1+ Gj)ko‘j_l) from the segment [{5_1,%x]. Then, the integrand
K(#1,22,1) ¢n(t) admits an analytic continuation into the ellipse with its focuses at the points (¢x,0) and (¢x-1,0)
such that it passes through the point

(0.5 (thot + 1), (1+ @j)kw—l))

(this continuation is bounded within the above ellipse by const - (1 + Qj)k(l_Aj)).
Hence, the following estimate holds

ti_1

/ K(x1,22,1) on(t) dt — Z A;n)[( (xl, xz,t‘gn)) @;n) = R; x(x) < const- (1+ Qj)_w‘j (Qk(x))_znj’k
t S eltn tumil

k 3 ) 1

Here Qi (z) > Q.
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Thus if the point # is at a sufficient distance from all the elementary segments of the curve T' (these segments
specify the composite quadrature formula (5)), then the choice of n; ; ensures that

|R(l‘)| < const - e~V

Let us consider the case when the point x approaches the boundary.
Suppose the point « is at a distance of 2d from the segment [tg, 15 _1], where 0 < d < (1+®j)k(>‘j_1). By repeating
the above reasoning, then, we obtain the estimate

(1 + @j)k

d (Qk(d))_znjk , 1< Qr(d) <14 const-d

|R; x| < const -

since the sum of semiaxes of the ellipse with focuses (¢, 0) and (t5_1,0) (into which the integrand can be analytically
continued) tends to (tx—1 — ¢x)/2 with decreasing d.

This estimate proves the theorem.

Thus, the above method proposed for solving problem (1) cannot be accepted as workable, since its usage does
not guarantee the proximity of the exact and approximate solutions at any interior point of the domain 2. However,
this method can easily be modified.

Let us consider the case when d < (1+ Gj)ko‘j_l) and replace the function ¢, (t) on the segment [ty,?5_1] by the
polynomial Lay, x(t) that interpolates ¢, () in the following points:

it tr_ to_1—1 2m — 1
k+k1+k1 kCOS<7T(m )

5 5 ), m:l,...,?njyk

477,‘7'7;C

Since n; j = O(\/ﬁ), the number of arithmetic operations to compute ¢, (t) at these points is O(n\/ﬁ)
The estimate

(X [0 (t) = Lan, e (8)] < const - Q7 Qi > 1
kitk—1

is valid, where @ was specified in the proof of Theorem 3. Hence,

tg—1 tg—1
/K(ml,xz,t)gon(t)dt: / K(xl,xz,t)LGjyk(t)dt—i—O(e‘cﬁ)
ix 173

It is sufficient to evaluate the integral in the right-hand side of this representation with an accuracy O (e‘c\/ﬁ).

To do this, a standard adaptive quadrature may be used. Let us notice the following fact: consider the segments
[tk,tr_1] on [0,1] such that a fixed point & € Q is at a distance of at most 2(1 4+ ©)**i=1) from each of them; then,
their number is finite and depends on a position of the point x, but does not depend on n.

Now we consider the problem of computing an approximate solution to (1) at m interior points of the domain €
with an accuracy ¢ > 0. Since a system of linear algebraic equations with n ~ In? 1/e unknowns should be solved to
compute an approximate solution of integral equation (3), the number of overall arithmetic operations is O(1n6 1/e+
mln®1/¢).

This estimate is somewhat excessive, since the approximate solution is determined in O(n) (but not O(n\/ﬁ))
operations if the point z is at a sufficient distance from the boundary.

4. Computing the normal derivative of a solution to Dirichlet’s problem. The problem of computing
the normal derivative of a solution to the original boundary value problem at a boundary point of the domain is much
more complicated than the computation of this solution at a given point of the domain.

Let U be a solution to problem (1) and consider the problem of computing U (x)/dn, at an arbitrary boundary
point £° under the condition that this point is not a corner one.

Suppose z° = (a:l(é’o), (xz(é’o)) and & € (sj,5541/2] for some j =0,...,J — 1. Let us assume that x5(s) = 0 for
5 € [sj,5;41/2] and ° = (0,0) up to a linear change of coordinates and that for some integer n > 0 which satisfies the

hypotheses of Theorem 2 we computed a solution {q)l(n)}, i=1,...,n, to the approximating linear system (6) (hence,
we can compute the solution ¢, to equation (7) (i.e., the approximate solution to equation (3)) at any point of the
domain).

Let us choose numbers §1, d5 > 0 such that the segment [£y — 81, & + d2] is formed by the elementary segment of
the composite quadrature formula (5) the point £ belongs to and by the two adjacent elementary segments.
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The boundary segment that corresponds to [€g — 81, &g + d2] is denoted by I'(2?). Then

9, 9, 9, 9,
v Ong / <%ln|x - y|) ®(y) dly + o, / <%1ﬂ | — 3/|) ®(y) dly

I'(z?) 0 P\T'(z°) r=x0
= (Vo@)(2") + (V1®)(«°)

A point (0, 7) is an interior one of the domain Q if 7 > 0 is small. Hence,

U ()

It
i ong

r=r

o + 02
(Vo) (°) = lim 2 / T L)dt
=0 Ot (t—&p)2+ 72
§o— 01

Let [a, 8] C [§o — 61, &0 + d2] and &y € [or, 5]. Then,

J / / (t = &)? / (t)

T B —&)% —1? _ ®
S BT 1135 ((t = &)2 +72)° A= / i "
a a

Setting dp = 0.5 - min(dy, d2), we note that

5 &0+ 9o &+ 9o 5 ‘

T __ O(f__t=%
ar / (t —&o)* + 72 plt)di = / ot ((t—go)2+r2)¢(t)dt
&0 — do &0 — do
Following [3], after repeated integration by parts we obtain
9 S04 S0+ 9 (t) €o+do
T - _ _ Z 1 _en = 2
g [ graprme0d=— [ miealg@ds (fomesl - AE) )
&0 — do §o —
Denote Iy = [£p — bo, o + do]. Since T'(xg) = [€o — 1, €0 + J2] in our coordinate system, we get
£o+do
i
i) = [ wi- [wle-gle 0 d+ (¢Oml- ol - 2L
t - €0 7 t— €0 £o—9do
INCAN 0

In order to perform the further mathematical treatment, it is necessary to compute derivatives of the function ¢
approximately.
Let & € (s;,5541/2]. Denote

(o .
Kn(é,1) = (asmh(s,t)) e ., o m=1,2,...
Theorem 4. If £ € (s;,5;41/2], then the estimate
" const
a _p(m) (n) - (n) (n) . ) L —c/n
dsm #(s) ot FE) + Z Aj K (€,t] ) (Sp(tﬁ ) S0(5‘7)) < (€ —s5)m €
B £ ¢ls5,5541]
holds for the weights and nodes of quadrature formula (5).
Proof. Since
K(s,t) =0
for s, t € [s;, 8;41], it follows from equation (3) that for each s € [s;, s;41]
o)== [ RO = pls) i+ G5) - pls)

[O,T]\[s]',s]'_H]
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Differentiating this equality m times with respect to s for s = &, we obtain

dm
qsm ©(s)

== [ a0 el - (s de+ £

= 0 TNEsse]

In order to evaluate the integral in the right-hand side of the above equality, we use the composite quadrature
formula (5) with the nodes that do not belong to the segment [s;, s;41].

Now we consider the segment [s;_1/9,5;]. The analysis of derivatives of the function K (s,t) performed in [1]
demonstrates that for any integer £ > 0 the integrand can be continued analytically from the segment

55 = (55 = sj-172)(1+©;) 7" 55 — (55 = 5j-1/2) (14 ©5) "]
of the real axis into the circle of the complex plane with its center at the midpoint of this segment and with its radius
rr = 0.5 (55— sj-172) (1= (140;)71) (1+0;)7F
The analytic function obtained is bounded within this circle by

const
(§ — s5)mt!

Generalizing the technique proposed in [1] for estimation of the quadrature error, we complete our proof of Theorem 4.

Suppose a point & belongs to the segment [t, t,_1] that lies in [s;, s;41/2]. In (10) we replace the functions ¢’ (t),
¢'(t), and ¢(t) by the interpolating Chebyshev polynomials with n; ; nodes on each of the segments [§y — 61, £n — do],
[0 — do, €0 + d0], and [€g + b0, &o + 2], using the approximate values of ¢, (t) and the values of derivatives that were
computed by the method proposed in the proof of Theorem 2. Then, the integrals in the right-hand side of (10) can
be evaluated analytically. In order to compute (V1 ®) (xo), we shall use the quadrature formula (5) with nodes that do
not belong to the segment [£y — 1, & + Ja].

As a result, we constructed a method that allows us to compute a value of the normal derivative for the solution
to problem (1) at any fixed boundary point z° with an error of order C'(zg) e~V where C(x°) is a constant that
depends only on a position of the point x° relative to the corner points of the boundary.

(1 + @j)_w‘j
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